| Step |
Hyp |
Ref |
Expression |
| 1 |
|
iinfssc.1 |
|- ( ph -> A =/= (/) ) |
| 2 |
|
iinfssc.2 |
|- ( ( ph /\ x e. A ) -> H C_cat J ) |
| 3 |
|
iinfssc.3 |
|- ( ph -> K = ( y e. |^|_ x e. A dom H |-> |^|_ x e. A ( H ` y ) ) ) |
| 4 |
|
eqidd |
|- ( ( ph /\ x e. A ) -> dom dom H = dom dom H ) |
| 5 |
2 4
|
sscfn1 |
|- ( ( ph /\ x e. A ) -> H Fn ( dom dom H X. dom dom H ) ) |
| 6 |
|
eqidd |
|- ( ( ph /\ x e. A ) -> dom dom J = dom dom J ) |
| 7 |
2 6
|
sscfn2 |
|- ( ( ph /\ x e. A ) -> J Fn ( dom dom J X. dom dom J ) ) |
| 8 |
5 7 2
|
ssc1 |
|- ( ( ph /\ x e. A ) -> dom dom H C_ dom dom J ) |
| 9 |
8
|
ralrimiva |
|- ( ph -> A. x e. A dom dom H C_ dom dom J ) |
| 10 |
|
r19.2z |
|- ( ( A =/= (/) /\ A. x e. A dom dom H C_ dom dom J ) -> E. x e. A dom dom H C_ dom dom J ) |
| 11 |
1 9 10
|
syl2anc |
|- ( ph -> E. x e. A dom dom H C_ dom dom J ) |
| 12 |
|
iinss |
|- ( E. x e. A dom dom H C_ dom dom J -> |^|_ x e. A dom dom H C_ dom dom J ) |
| 13 |
11 12
|
syl |
|- ( ph -> |^|_ x e. A dom dom H C_ dom dom J ) |
| 14 |
|
nfv |
|- F/ x ph |
| 15 |
1 2 3 4 14
|
iinfssclem1 |
|- ( ph -> K = ( z e. |^|_ x e. A dom dom H , w e. |^|_ x e. A dom dom H |-> |^|_ x e. A ( z H w ) ) ) |
| 16 |
|
ovex |
|- ( z H w ) e. _V |
| 17 |
16
|
rgenw |
|- A. x e. A ( z H w ) e. _V |
| 18 |
|
iinexg |
|- ( ( A =/= (/) /\ A. x e. A ( z H w ) e. _V ) -> |^|_ x e. A ( z H w ) e. _V ) |
| 19 |
1 17 18
|
sylancl |
|- ( ph -> |^|_ x e. A ( z H w ) e. _V ) |
| 20 |
19
|
adantr |
|- ( ( ph /\ ( z e. |^|_ x e. A dom dom H /\ w e. |^|_ x e. A dom dom H ) ) -> |^|_ x e. A ( z H w ) e. _V ) |
| 21 |
15 20
|
ovmpt4d |
|- ( ( ph /\ ( z e. |^|_ x e. A dom dom H /\ w e. |^|_ x e. A dom dom H ) ) -> ( z K w ) = |^|_ x e. A ( z H w ) ) |
| 22 |
1
|
adantr |
|- ( ( ph /\ ( z e. |^|_ x e. A dom dom H /\ w e. |^|_ x e. A dom dom H ) ) -> A =/= (/) ) |
| 23 |
|
nfii1 |
|- F/_ x |^|_ x e. A dom dom H |
| 24 |
23
|
nfcri |
|- F/ x z e. |^|_ x e. A dom dom H |
| 25 |
23
|
nfcri |
|- F/ x w e. |^|_ x e. A dom dom H |
| 26 |
24 25
|
nfan |
|- F/ x ( z e. |^|_ x e. A dom dom H /\ w e. |^|_ x e. A dom dom H ) |
| 27 |
14 26
|
nfan |
|- F/ x ( ph /\ ( z e. |^|_ x e. A dom dom H /\ w e. |^|_ x e. A dom dom H ) ) |
| 28 |
5
|
adantlr |
|- ( ( ( ph /\ ( z e. |^|_ x e. A dom dom H /\ w e. |^|_ x e. A dom dom H ) ) /\ x e. A ) -> H Fn ( dom dom H X. dom dom H ) ) |
| 29 |
2
|
adantlr |
|- ( ( ( ph /\ ( z e. |^|_ x e. A dom dom H /\ w e. |^|_ x e. A dom dom H ) ) /\ x e. A ) -> H C_cat J ) |
| 30 |
|
iinss2 |
|- ( x e. A -> |^|_ x e. A dom dom H C_ dom dom H ) |
| 31 |
30
|
adantl |
|- ( ( ( ph /\ ( z e. |^|_ x e. A dom dom H /\ w e. |^|_ x e. A dom dom H ) ) /\ x e. A ) -> |^|_ x e. A dom dom H C_ dom dom H ) |
| 32 |
|
simplrl |
|- ( ( ( ph /\ ( z e. |^|_ x e. A dom dom H /\ w e. |^|_ x e. A dom dom H ) ) /\ x e. A ) -> z e. |^|_ x e. A dom dom H ) |
| 33 |
31 32
|
sseldd |
|- ( ( ( ph /\ ( z e. |^|_ x e. A dom dom H /\ w e. |^|_ x e. A dom dom H ) ) /\ x e. A ) -> z e. dom dom H ) |
| 34 |
|
simplrr |
|- ( ( ( ph /\ ( z e. |^|_ x e. A dom dom H /\ w e. |^|_ x e. A dom dom H ) ) /\ x e. A ) -> w e. |^|_ x e. A dom dom H ) |
| 35 |
31 34
|
sseldd |
|- ( ( ( ph /\ ( z e. |^|_ x e. A dom dom H /\ w e. |^|_ x e. A dom dom H ) ) /\ x e. A ) -> w e. dom dom H ) |
| 36 |
28 29 33 35
|
ssc2 |
|- ( ( ( ph /\ ( z e. |^|_ x e. A dom dom H /\ w e. |^|_ x e. A dom dom H ) ) /\ x e. A ) -> ( z H w ) C_ ( z J w ) ) |
| 37 |
27 36
|
ralrimia |
|- ( ( ph /\ ( z e. |^|_ x e. A dom dom H /\ w e. |^|_ x e. A dom dom H ) ) -> A. x e. A ( z H w ) C_ ( z J w ) ) |
| 38 |
22 37
|
jca |
|- ( ( ph /\ ( z e. |^|_ x e. A dom dom H /\ w e. |^|_ x e. A dom dom H ) ) -> ( A =/= (/) /\ A. x e. A ( z H w ) C_ ( z J w ) ) ) |
| 39 |
|
r19.2z |
|- ( ( A =/= (/) /\ A. x e. A ( z H w ) C_ ( z J w ) ) -> E. x e. A ( z H w ) C_ ( z J w ) ) |
| 40 |
|
iinss |
|- ( E. x e. A ( z H w ) C_ ( z J w ) -> |^|_ x e. A ( z H w ) C_ ( z J w ) ) |
| 41 |
38 39 40
|
3syl |
|- ( ( ph /\ ( z e. |^|_ x e. A dom dom H /\ w e. |^|_ x e. A dom dom H ) ) -> |^|_ x e. A ( z H w ) C_ ( z J w ) ) |
| 42 |
21 41
|
eqsstrd |
|- ( ( ph /\ ( z e. |^|_ x e. A dom dom H /\ w e. |^|_ x e. A dom dom H ) ) -> ( z K w ) C_ ( z J w ) ) |
| 43 |
42
|
ralrimivva |
|- ( ph -> A. z e. |^|_ x e. A dom dom H A. w e. |^|_ x e. A dom dom H ( z K w ) C_ ( z J w ) ) |
| 44 |
1 2 3 4 14
|
iinfssclem2 |
|- ( ph -> K Fn ( |^|_ x e. A dom dom H X. |^|_ x e. A dom dom H ) ) |
| 45 |
|
n0 |
|- ( A =/= (/) <-> E. x x e. A ) |
| 46 |
1 45
|
sylib |
|- ( ph -> E. x x e. A ) |
| 47 |
46 7
|
exlimddv |
|- ( ph -> J Fn ( dom dom J X. dom dom J ) ) |
| 48 |
|
sscrel |
|- Rel C_cat |
| 49 |
48
|
brrelex2i |
|- ( H C_cat J -> J e. _V ) |
| 50 |
2 49
|
syl |
|- ( ( ph /\ x e. A ) -> J e. _V ) |
| 51 |
46 50
|
exlimddv |
|- ( ph -> J e. _V ) |
| 52 |
51
|
dmexd |
|- ( ph -> dom J e. _V ) |
| 53 |
52
|
dmexd |
|- ( ph -> dom dom J e. _V ) |
| 54 |
44 47 53
|
isssc |
|- ( ph -> ( K C_cat J <-> ( |^|_ x e. A dom dom H C_ dom dom J /\ A. z e. |^|_ x e. A dom dom H A. w e. |^|_ x e. A dom dom H ( z K w ) C_ ( z J w ) ) ) ) |
| 55 |
13 43 54
|
mpbir2and |
|- ( ph -> K C_cat J ) |