Metamath Proof Explorer


Theorem iinfssc

Description: Indexed intersection of subcategories is a subcategory (the category-agnostic version). (Contributed by Zhi Wang, 31-Oct-2025)

Ref Expression
Hypotheses iinfssc.1 ( 𝜑𝐴 ≠ ∅ )
iinfssc.2 ( ( 𝜑𝑥𝐴 ) → 𝐻cat 𝐽 )
iinfssc.3 ( 𝜑𝐾 = ( 𝑦 𝑥𝐴 dom 𝐻 𝑥𝐴 ( 𝐻𝑦 ) ) )
Assertion iinfssc ( 𝜑𝐾cat 𝐽 )

Proof

Step Hyp Ref Expression
1 iinfssc.1 ( 𝜑𝐴 ≠ ∅ )
2 iinfssc.2 ( ( 𝜑𝑥𝐴 ) → 𝐻cat 𝐽 )
3 iinfssc.3 ( 𝜑𝐾 = ( 𝑦 𝑥𝐴 dom 𝐻 𝑥𝐴 ( 𝐻𝑦 ) ) )
4 eqidd ( ( 𝜑𝑥𝐴 ) → dom dom 𝐻 = dom dom 𝐻 )
5 2 4 sscfn1 ( ( 𝜑𝑥𝐴 ) → 𝐻 Fn ( dom dom 𝐻 × dom dom 𝐻 ) )
6 eqidd ( ( 𝜑𝑥𝐴 ) → dom dom 𝐽 = dom dom 𝐽 )
7 2 6 sscfn2 ( ( 𝜑𝑥𝐴 ) → 𝐽 Fn ( dom dom 𝐽 × dom dom 𝐽 ) )
8 5 7 2 ssc1 ( ( 𝜑𝑥𝐴 ) → dom dom 𝐻 ⊆ dom dom 𝐽 )
9 8 ralrimiva ( 𝜑 → ∀ 𝑥𝐴 dom dom 𝐻 ⊆ dom dom 𝐽 )
10 r19.2z ( ( 𝐴 ≠ ∅ ∧ ∀ 𝑥𝐴 dom dom 𝐻 ⊆ dom dom 𝐽 ) → ∃ 𝑥𝐴 dom dom 𝐻 ⊆ dom dom 𝐽 )
11 1 9 10 syl2anc ( 𝜑 → ∃ 𝑥𝐴 dom dom 𝐻 ⊆ dom dom 𝐽 )
12 iinss ( ∃ 𝑥𝐴 dom dom 𝐻 ⊆ dom dom 𝐽 𝑥𝐴 dom dom 𝐻 ⊆ dom dom 𝐽 )
13 11 12 syl ( 𝜑 𝑥𝐴 dom dom 𝐻 ⊆ dom dom 𝐽 )
14 nfv 𝑥 𝜑
15 1 2 3 4 14 iinfssclem1 ( 𝜑𝐾 = ( 𝑧 𝑥𝐴 dom dom 𝐻 , 𝑤 𝑥𝐴 dom dom 𝐻 𝑥𝐴 ( 𝑧 𝐻 𝑤 ) ) )
16 ovex ( 𝑧 𝐻 𝑤 ) ∈ V
17 16 rgenw 𝑥𝐴 ( 𝑧 𝐻 𝑤 ) ∈ V
18 iinexg ( ( 𝐴 ≠ ∅ ∧ ∀ 𝑥𝐴 ( 𝑧 𝐻 𝑤 ) ∈ V ) → 𝑥𝐴 ( 𝑧 𝐻 𝑤 ) ∈ V )
19 1 17 18 sylancl ( 𝜑 𝑥𝐴 ( 𝑧 𝐻 𝑤 ) ∈ V )
20 19 adantr ( ( 𝜑 ∧ ( 𝑧 𝑥𝐴 dom dom 𝐻𝑤 𝑥𝐴 dom dom 𝐻 ) ) → 𝑥𝐴 ( 𝑧 𝐻 𝑤 ) ∈ V )
21 15 20 ovmpt4d ( ( 𝜑 ∧ ( 𝑧 𝑥𝐴 dom dom 𝐻𝑤 𝑥𝐴 dom dom 𝐻 ) ) → ( 𝑧 𝐾 𝑤 ) = 𝑥𝐴 ( 𝑧 𝐻 𝑤 ) )
22 1 adantr ( ( 𝜑 ∧ ( 𝑧 𝑥𝐴 dom dom 𝐻𝑤 𝑥𝐴 dom dom 𝐻 ) ) → 𝐴 ≠ ∅ )
23 nfii1 𝑥 𝑥𝐴 dom dom 𝐻
24 23 nfcri 𝑥 𝑧 𝑥𝐴 dom dom 𝐻
25 23 nfcri 𝑥 𝑤 𝑥𝐴 dom dom 𝐻
26 24 25 nfan 𝑥 ( 𝑧 𝑥𝐴 dom dom 𝐻𝑤 𝑥𝐴 dom dom 𝐻 )
27 14 26 nfan 𝑥 ( 𝜑 ∧ ( 𝑧 𝑥𝐴 dom dom 𝐻𝑤 𝑥𝐴 dom dom 𝐻 ) )
28 5 adantlr ( ( ( 𝜑 ∧ ( 𝑧 𝑥𝐴 dom dom 𝐻𝑤 𝑥𝐴 dom dom 𝐻 ) ) ∧ 𝑥𝐴 ) → 𝐻 Fn ( dom dom 𝐻 × dom dom 𝐻 ) )
29 2 adantlr ( ( ( 𝜑 ∧ ( 𝑧 𝑥𝐴 dom dom 𝐻𝑤 𝑥𝐴 dom dom 𝐻 ) ) ∧ 𝑥𝐴 ) → 𝐻cat 𝐽 )
30 iinss2 ( 𝑥𝐴 𝑥𝐴 dom dom 𝐻 ⊆ dom dom 𝐻 )
31 30 adantl ( ( ( 𝜑 ∧ ( 𝑧 𝑥𝐴 dom dom 𝐻𝑤 𝑥𝐴 dom dom 𝐻 ) ) ∧ 𝑥𝐴 ) → 𝑥𝐴 dom dom 𝐻 ⊆ dom dom 𝐻 )
32 simplrl ( ( ( 𝜑 ∧ ( 𝑧 𝑥𝐴 dom dom 𝐻𝑤 𝑥𝐴 dom dom 𝐻 ) ) ∧ 𝑥𝐴 ) → 𝑧 𝑥𝐴 dom dom 𝐻 )
33 31 32 sseldd ( ( ( 𝜑 ∧ ( 𝑧 𝑥𝐴 dom dom 𝐻𝑤 𝑥𝐴 dom dom 𝐻 ) ) ∧ 𝑥𝐴 ) → 𝑧 ∈ dom dom 𝐻 )
34 simplrr ( ( ( 𝜑 ∧ ( 𝑧 𝑥𝐴 dom dom 𝐻𝑤 𝑥𝐴 dom dom 𝐻 ) ) ∧ 𝑥𝐴 ) → 𝑤 𝑥𝐴 dom dom 𝐻 )
35 31 34 sseldd ( ( ( 𝜑 ∧ ( 𝑧 𝑥𝐴 dom dom 𝐻𝑤 𝑥𝐴 dom dom 𝐻 ) ) ∧ 𝑥𝐴 ) → 𝑤 ∈ dom dom 𝐻 )
36 28 29 33 35 ssc2 ( ( ( 𝜑 ∧ ( 𝑧 𝑥𝐴 dom dom 𝐻𝑤 𝑥𝐴 dom dom 𝐻 ) ) ∧ 𝑥𝐴 ) → ( 𝑧 𝐻 𝑤 ) ⊆ ( 𝑧 𝐽 𝑤 ) )
37 27 36 ralrimia ( ( 𝜑 ∧ ( 𝑧 𝑥𝐴 dom dom 𝐻𝑤 𝑥𝐴 dom dom 𝐻 ) ) → ∀ 𝑥𝐴 ( 𝑧 𝐻 𝑤 ) ⊆ ( 𝑧 𝐽 𝑤 ) )
38 22 37 jca ( ( 𝜑 ∧ ( 𝑧 𝑥𝐴 dom dom 𝐻𝑤 𝑥𝐴 dom dom 𝐻 ) ) → ( 𝐴 ≠ ∅ ∧ ∀ 𝑥𝐴 ( 𝑧 𝐻 𝑤 ) ⊆ ( 𝑧 𝐽 𝑤 ) ) )
39 r19.2z ( ( 𝐴 ≠ ∅ ∧ ∀ 𝑥𝐴 ( 𝑧 𝐻 𝑤 ) ⊆ ( 𝑧 𝐽 𝑤 ) ) → ∃ 𝑥𝐴 ( 𝑧 𝐻 𝑤 ) ⊆ ( 𝑧 𝐽 𝑤 ) )
40 iinss ( ∃ 𝑥𝐴 ( 𝑧 𝐻 𝑤 ) ⊆ ( 𝑧 𝐽 𝑤 ) → 𝑥𝐴 ( 𝑧 𝐻 𝑤 ) ⊆ ( 𝑧 𝐽 𝑤 ) )
41 38 39 40 3syl ( ( 𝜑 ∧ ( 𝑧 𝑥𝐴 dom dom 𝐻𝑤 𝑥𝐴 dom dom 𝐻 ) ) → 𝑥𝐴 ( 𝑧 𝐻 𝑤 ) ⊆ ( 𝑧 𝐽 𝑤 ) )
42 21 41 eqsstrd ( ( 𝜑 ∧ ( 𝑧 𝑥𝐴 dom dom 𝐻𝑤 𝑥𝐴 dom dom 𝐻 ) ) → ( 𝑧 𝐾 𝑤 ) ⊆ ( 𝑧 𝐽 𝑤 ) )
43 42 ralrimivva ( 𝜑 → ∀ 𝑧 𝑥𝐴 dom dom 𝐻𝑤 𝑥𝐴 dom dom 𝐻 ( 𝑧 𝐾 𝑤 ) ⊆ ( 𝑧 𝐽 𝑤 ) )
44 1 2 3 4 14 iinfssclem2 ( 𝜑𝐾 Fn ( 𝑥𝐴 dom dom 𝐻 × 𝑥𝐴 dom dom 𝐻 ) )
45 n0 ( 𝐴 ≠ ∅ ↔ ∃ 𝑥 𝑥𝐴 )
46 1 45 sylib ( 𝜑 → ∃ 𝑥 𝑥𝐴 )
47 46 7 exlimddv ( 𝜑𝐽 Fn ( dom dom 𝐽 × dom dom 𝐽 ) )
48 sscrel Rel ⊆cat
49 48 brrelex2i ( 𝐻cat 𝐽𝐽 ∈ V )
50 2 49 syl ( ( 𝜑𝑥𝐴 ) → 𝐽 ∈ V )
51 46 50 exlimddv ( 𝜑𝐽 ∈ V )
52 51 dmexd ( 𝜑 → dom 𝐽 ∈ V )
53 52 dmexd ( 𝜑 → dom dom 𝐽 ∈ V )
54 44 47 53 isssc ( 𝜑 → ( 𝐾cat 𝐽 ↔ ( 𝑥𝐴 dom dom 𝐻 ⊆ dom dom 𝐽 ∧ ∀ 𝑧 𝑥𝐴 dom dom 𝐻𝑤 𝑥𝐴 dom dom 𝐻 ( 𝑧 𝐾 𝑤 ) ⊆ ( 𝑧 𝐽 𝑤 ) ) ) )
55 13 43 54 mpbir2and ( 𝜑𝐾cat 𝐽 )