| Step |
Hyp |
Ref |
Expression |
| 1 |
|
iinfssc.1 |
⊢ ( 𝜑 → 𝐴 ≠ ∅ ) |
| 2 |
|
iinfssc.2 |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → 𝐻 ⊆cat 𝐽 ) |
| 3 |
|
iinfssc.3 |
⊢ ( 𝜑 → 𝐾 = ( 𝑦 ∈ ∩ 𝑥 ∈ 𝐴 dom 𝐻 ↦ ∩ 𝑥 ∈ 𝐴 ( 𝐻 ‘ 𝑦 ) ) ) |
| 4 |
|
eqidd |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → dom dom 𝐻 = dom dom 𝐻 ) |
| 5 |
2 4
|
sscfn1 |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → 𝐻 Fn ( dom dom 𝐻 × dom dom 𝐻 ) ) |
| 6 |
|
eqidd |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → dom dom 𝐽 = dom dom 𝐽 ) |
| 7 |
2 6
|
sscfn2 |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → 𝐽 Fn ( dom dom 𝐽 × dom dom 𝐽 ) ) |
| 8 |
5 7 2
|
ssc1 |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → dom dom 𝐻 ⊆ dom dom 𝐽 ) |
| 9 |
8
|
ralrimiva |
⊢ ( 𝜑 → ∀ 𝑥 ∈ 𝐴 dom dom 𝐻 ⊆ dom dom 𝐽 ) |
| 10 |
|
r19.2z |
⊢ ( ( 𝐴 ≠ ∅ ∧ ∀ 𝑥 ∈ 𝐴 dom dom 𝐻 ⊆ dom dom 𝐽 ) → ∃ 𝑥 ∈ 𝐴 dom dom 𝐻 ⊆ dom dom 𝐽 ) |
| 11 |
1 9 10
|
syl2anc |
⊢ ( 𝜑 → ∃ 𝑥 ∈ 𝐴 dom dom 𝐻 ⊆ dom dom 𝐽 ) |
| 12 |
|
iinss |
⊢ ( ∃ 𝑥 ∈ 𝐴 dom dom 𝐻 ⊆ dom dom 𝐽 → ∩ 𝑥 ∈ 𝐴 dom dom 𝐻 ⊆ dom dom 𝐽 ) |
| 13 |
11 12
|
syl |
⊢ ( 𝜑 → ∩ 𝑥 ∈ 𝐴 dom dom 𝐻 ⊆ dom dom 𝐽 ) |
| 14 |
|
nfv |
⊢ Ⅎ 𝑥 𝜑 |
| 15 |
1 2 3 4 14
|
iinfssclem1 |
⊢ ( 𝜑 → 𝐾 = ( 𝑧 ∈ ∩ 𝑥 ∈ 𝐴 dom dom 𝐻 , 𝑤 ∈ ∩ 𝑥 ∈ 𝐴 dom dom 𝐻 ↦ ∩ 𝑥 ∈ 𝐴 ( 𝑧 𝐻 𝑤 ) ) ) |
| 16 |
|
ovex |
⊢ ( 𝑧 𝐻 𝑤 ) ∈ V |
| 17 |
16
|
rgenw |
⊢ ∀ 𝑥 ∈ 𝐴 ( 𝑧 𝐻 𝑤 ) ∈ V |
| 18 |
|
iinexg |
⊢ ( ( 𝐴 ≠ ∅ ∧ ∀ 𝑥 ∈ 𝐴 ( 𝑧 𝐻 𝑤 ) ∈ V ) → ∩ 𝑥 ∈ 𝐴 ( 𝑧 𝐻 𝑤 ) ∈ V ) |
| 19 |
1 17 18
|
sylancl |
⊢ ( 𝜑 → ∩ 𝑥 ∈ 𝐴 ( 𝑧 𝐻 𝑤 ) ∈ V ) |
| 20 |
19
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝑧 ∈ ∩ 𝑥 ∈ 𝐴 dom dom 𝐻 ∧ 𝑤 ∈ ∩ 𝑥 ∈ 𝐴 dom dom 𝐻 ) ) → ∩ 𝑥 ∈ 𝐴 ( 𝑧 𝐻 𝑤 ) ∈ V ) |
| 21 |
15 20
|
ovmpt4d |
⊢ ( ( 𝜑 ∧ ( 𝑧 ∈ ∩ 𝑥 ∈ 𝐴 dom dom 𝐻 ∧ 𝑤 ∈ ∩ 𝑥 ∈ 𝐴 dom dom 𝐻 ) ) → ( 𝑧 𝐾 𝑤 ) = ∩ 𝑥 ∈ 𝐴 ( 𝑧 𝐻 𝑤 ) ) |
| 22 |
1
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝑧 ∈ ∩ 𝑥 ∈ 𝐴 dom dom 𝐻 ∧ 𝑤 ∈ ∩ 𝑥 ∈ 𝐴 dom dom 𝐻 ) ) → 𝐴 ≠ ∅ ) |
| 23 |
|
nfii1 |
⊢ Ⅎ 𝑥 ∩ 𝑥 ∈ 𝐴 dom dom 𝐻 |
| 24 |
23
|
nfcri |
⊢ Ⅎ 𝑥 𝑧 ∈ ∩ 𝑥 ∈ 𝐴 dom dom 𝐻 |
| 25 |
23
|
nfcri |
⊢ Ⅎ 𝑥 𝑤 ∈ ∩ 𝑥 ∈ 𝐴 dom dom 𝐻 |
| 26 |
24 25
|
nfan |
⊢ Ⅎ 𝑥 ( 𝑧 ∈ ∩ 𝑥 ∈ 𝐴 dom dom 𝐻 ∧ 𝑤 ∈ ∩ 𝑥 ∈ 𝐴 dom dom 𝐻 ) |
| 27 |
14 26
|
nfan |
⊢ Ⅎ 𝑥 ( 𝜑 ∧ ( 𝑧 ∈ ∩ 𝑥 ∈ 𝐴 dom dom 𝐻 ∧ 𝑤 ∈ ∩ 𝑥 ∈ 𝐴 dom dom 𝐻 ) ) |
| 28 |
5
|
adantlr |
⊢ ( ( ( 𝜑 ∧ ( 𝑧 ∈ ∩ 𝑥 ∈ 𝐴 dom dom 𝐻 ∧ 𝑤 ∈ ∩ 𝑥 ∈ 𝐴 dom dom 𝐻 ) ) ∧ 𝑥 ∈ 𝐴 ) → 𝐻 Fn ( dom dom 𝐻 × dom dom 𝐻 ) ) |
| 29 |
2
|
adantlr |
⊢ ( ( ( 𝜑 ∧ ( 𝑧 ∈ ∩ 𝑥 ∈ 𝐴 dom dom 𝐻 ∧ 𝑤 ∈ ∩ 𝑥 ∈ 𝐴 dom dom 𝐻 ) ) ∧ 𝑥 ∈ 𝐴 ) → 𝐻 ⊆cat 𝐽 ) |
| 30 |
|
iinss2 |
⊢ ( 𝑥 ∈ 𝐴 → ∩ 𝑥 ∈ 𝐴 dom dom 𝐻 ⊆ dom dom 𝐻 ) |
| 31 |
30
|
adantl |
⊢ ( ( ( 𝜑 ∧ ( 𝑧 ∈ ∩ 𝑥 ∈ 𝐴 dom dom 𝐻 ∧ 𝑤 ∈ ∩ 𝑥 ∈ 𝐴 dom dom 𝐻 ) ) ∧ 𝑥 ∈ 𝐴 ) → ∩ 𝑥 ∈ 𝐴 dom dom 𝐻 ⊆ dom dom 𝐻 ) |
| 32 |
|
simplrl |
⊢ ( ( ( 𝜑 ∧ ( 𝑧 ∈ ∩ 𝑥 ∈ 𝐴 dom dom 𝐻 ∧ 𝑤 ∈ ∩ 𝑥 ∈ 𝐴 dom dom 𝐻 ) ) ∧ 𝑥 ∈ 𝐴 ) → 𝑧 ∈ ∩ 𝑥 ∈ 𝐴 dom dom 𝐻 ) |
| 33 |
31 32
|
sseldd |
⊢ ( ( ( 𝜑 ∧ ( 𝑧 ∈ ∩ 𝑥 ∈ 𝐴 dom dom 𝐻 ∧ 𝑤 ∈ ∩ 𝑥 ∈ 𝐴 dom dom 𝐻 ) ) ∧ 𝑥 ∈ 𝐴 ) → 𝑧 ∈ dom dom 𝐻 ) |
| 34 |
|
simplrr |
⊢ ( ( ( 𝜑 ∧ ( 𝑧 ∈ ∩ 𝑥 ∈ 𝐴 dom dom 𝐻 ∧ 𝑤 ∈ ∩ 𝑥 ∈ 𝐴 dom dom 𝐻 ) ) ∧ 𝑥 ∈ 𝐴 ) → 𝑤 ∈ ∩ 𝑥 ∈ 𝐴 dom dom 𝐻 ) |
| 35 |
31 34
|
sseldd |
⊢ ( ( ( 𝜑 ∧ ( 𝑧 ∈ ∩ 𝑥 ∈ 𝐴 dom dom 𝐻 ∧ 𝑤 ∈ ∩ 𝑥 ∈ 𝐴 dom dom 𝐻 ) ) ∧ 𝑥 ∈ 𝐴 ) → 𝑤 ∈ dom dom 𝐻 ) |
| 36 |
28 29 33 35
|
ssc2 |
⊢ ( ( ( 𝜑 ∧ ( 𝑧 ∈ ∩ 𝑥 ∈ 𝐴 dom dom 𝐻 ∧ 𝑤 ∈ ∩ 𝑥 ∈ 𝐴 dom dom 𝐻 ) ) ∧ 𝑥 ∈ 𝐴 ) → ( 𝑧 𝐻 𝑤 ) ⊆ ( 𝑧 𝐽 𝑤 ) ) |
| 37 |
27 36
|
ralrimia |
⊢ ( ( 𝜑 ∧ ( 𝑧 ∈ ∩ 𝑥 ∈ 𝐴 dom dom 𝐻 ∧ 𝑤 ∈ ∩ 𝑥 ∈ 𝐴 dom dom 𝐻 ) ) → ∀ 𝑥 ∈ 𝐴 ( 𝑧 𝐻 𝑤 ) ⊆ ( 𝑧 𝐽 𝑤 ) ) |
| 38 |
22 37
|
jca |
⊢ ( ( 𝜑 ∧ ( 𝑧 ∈ ∩ 𝑥 ∈ 𝐴 dom dom 𝐻 ∧ 𝑤 ∈ ∩ 𝑥 ∈ 𝐴 dom dom 𝐻 ) ) → ( 𝐴 ≠ ∅ ∧ ∀ 𝑥 ∈ 𝐴 ( 𝑧 𝐻 𝑤 ) ⊆ ( 𝑧 𝐽 𝑤 ) ) ) |
| 39 |
|
r19.2z |
⊢ ( ( 𝐴 ≠ ∅ ∧ ∀ 𝑥 ∈ 𝐴 ( 𝑧 𝐻 𝑤 ) ⊆ ( 𝑧 𝐽 𝑤 ) ) → ∃ 𝑥 ∈ 𝐴 ( 𝑧 𝐻 𝑤 ) ⊆ ( 𝑧 𝐽 𝑤 ) ) |
| 40 |
|
iinss |
⊢ ( ∃ 𝑥 ∈ 𝐴 ( 𝑧 𝐻 𝑤 ) ⊆ ( 𝑧 𝐽 𝑤 ) → ∩ 𝑥 ∈ 𝐴 ( 𝑧 𝐻 𝑤 ) ⊆ ( 𝑧 𝐽 𝑤 ) ) |
| 41 |
38 39 40
|
3syl |
⊢ ( ( 𝜑 ∧ ( 𝑧 ∈ ∩ 𝑥 ∈ 𝐴 dom dom 𝐻 ∧ 𝑤 ∈ ∩ 𝑥 ∈ 𝐴 dom dom 𝐻 ) ) → ∩ 𝑥 ∈ 𝐴 ( 𝑧 𝐻 𝑤 ) ⊆ ( 𝑧 𝐽 𝑤 ) ) |
| 42 |
21 41
|
eqsstrd |
⊢ ( ( 𝜑 ∧ ( 𝑧 ∈ ∩ 𝑥 ∈ 𝐴 dom dom 𝐻 ∧ 𝑤 ∈ ∩ 𝑥 ∈ 𝐴 dom dom 𝐻 ) ) → ( 𝑧 𝐾 𝑤 ) ⊆ ( 𝑧 𝐽 𝑤 ) ) |
| 43 |
42
|
ralrimivva |
⊢ ( 𝜑 → ∀ 𝑧 ∈ ∩ 𝑥 ∈ 𝐴 dom dom 𝐻 ∀ 𝑤 ∈ ∩ 𝑥 ∈ 𝐴 dom dom 𝐻 ( 𝑧 𝐾 𝑤 ) ⊆ ( 𝑧 𝐽 𝑤 ) ) |
| 44 |
1 2 3 4 14
|
iinfssclem2 |
⊢ ( 𝜑 → 𝐾 Fn ( ∩ 𝑥 ∈ 𝐴 dom dom 𝐻 × ∩ 𝑥 ∈ 𝐴 dom dom 𝐻 ) ) |
| 45 |
|
n0 |
⊢ ( 𝐴 ≠ ∅ ↔ ∃ 𝑥 𝑥 ∈ 𝐴 ) |
| 46 |
1 45
|
sylib |
⊢ ( 𝜑 → ∃ 𝑥 𝑥 ∈ 𝐴 ) |
| 47 |
46 7
|
exlimddv |
⊢ ( 𝜑 → 𝐽 Fn ( dom dom 𝐽 × dom dom 𝐽 ) ) |
| 48 |
|
sscrel |
⊢ Rel ⊆cat |
| 49 |
48
|
brrelex2i |
⊢ ( 𝐻 ⊆cat 𝐽 → 𝐽 ∈ V ) |
| 50 |
2 49
|
syl |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → 𝐽 ∈ V ) |
| 51 |
46 50
|
exlimddv |
⊢ ( 𝜑 → 𝐽 ∈ V ) |
| 52 |
51
|
dmexd |
⊢ ( 𝜑 → dom 𝐽 ∈ V ) |
| 53 |
52
|
dmexd |
⊢ ( 𝜑 → dom dom 𝐽 ∈ V ) |
| 54 |
44 47 53
|
isssc |
⊢ ( 𝜑 → ( 𝐾 ⊆cat 𝐽 ↔ ( ∩ 𝑥 ∈ 𝐴 dom dom 𝐻 ⊆ dom dom 𝐽 ∧ ∀ 𝑧 ∈ ∩ 𝑥 ∈ 𝐴 dom dom 𝐻 ∀ 𝑤 ∈ ∩ 𝑥 ∈ 𝐴 dom dom 𝐻 ( 𝑧 𝐾 𝑤 ) ⊆ ( 𝑧 𝐽 𝑤 ) ) ) ) |
| 55 |
13 43 54
|
mpbir2and |
⊢ ( 𝜑 → 𝐾 ⊆cat 𝐽 ) |