| Step |
Hyp |
Ref |
Expression |
| 1 |
|
iinfssc.1 |
|
| 2 |
|
iinfssc.2 |
|
| 3 |
|
iinfssc.3 |
|
| 4 |
|
eqidd |
|
| 5 |
2 4
|
sscfn1 |
|
| 6 |
|
eqidd |
|
| 7 |
2 6
|
sscfn2 |
|
| 8 |
5 7 2
|
ssc1 |
|
| 9 |
8
|
ralrimiva |
|
| 10 |
|
r19.2z |
|
| 11 |
1 9 10
|
syl2anc |
|
| 12 |
|
iinss |
|
| 13 |
11 12
|
syl |
|
| 14 |
|
nfv |
|
| 15 |
1 2 3 4 14
|
iinfssclem1 |
|
| 16 |
|
ovex |
|
| 17 |
16
|
rgenw |
|
| 18 |
|
iinexg |
|
| 19 |
1 17 18
|
sylancl |
|
| 20 |
19
|
adantr |
|
| 21 |
15 20
|
ovmpt4d |
|
| 22 |
1
|
adantr |
|
| 23 |
|
nfii1 |
|
| 24 |
23
|
nfcri |
|
| 25 |
23
|
nfcri |
|
| 26 |
24 25
|
nfan |
|
| 27 |
14 26
|
nfan |
|
| 28 |
5
|
adantlr |
|
| 29 |
2
|
adantlr |
|
| 30 |
|
iinss2 |
|
| 31 |
30
|
adantl |
|
| 32 |
|
simplrl |
|
| 33 |
31 32
|
sseldd |
|
| 34 |
|
simplrr |
|
| 35 |
31 34
|
sseldd |
|
| 36 |
28 29 33 35
|
ssc2 |
|
| 37 |
27 36
|
ralrimia |
|
| 38 |
22 37
|
jca |
|
| 39 |
|
r19.2z |
|
| 40 |
|
iinss |
|
| 41 |
38 39 40
|
3syl |
|
| 42 |
21 41
|
eqsstrd |
|
| 43 |
42
|
ralrimivva |
|
| 44 |
1 2 3 4 14
|
iinfssclem2 |
|
| 45 |
|
n0 |
|
| 46 |
1 45
|
sylib |
|
| 47 |
46 7
|
exlimddv |
|
| 48 |
|
sscrel |
|
| 49 |
48
|
brrelex2i |
|
| 50 |
2 49
|
syl |
|
| 51 |
46 50
|
exlimddv |
|
| 52 |
51
|
dmexd |
|
| 53 |
52
|
dmexd |
|
| 54 |
44 47 53
|
isssc |
|
| 55 |
13 43 54
|
mpbir2and |
|