Database
SUPPLEMENTARY MATERIAL (USERS' MATHBOXES)
Mathbox for Zhi Wang
Categories
Subcategories
iinfssclem2
Next ⟩
iinfssclem3
Metamath Proof Explorer
Ascii
Unicode
Theorem
iinfssclem2
Description:
Lemma for
iinfssc
.
(Contributed by
Zhi Wang
, 31-Oct-2025)
Ref
Expression
Hypotheses
iinfssc.1
⊢
φ
→
A
≠
∅
iinfssc.2
⊢
φ
∧
x
∈
A
→
H
⊆
cat
J
iinfssc.3
⊢
φ
→
K
=
y
∈
⋂
x
∈
A
dom
⁡
H
⟼
⋂
x
∈
A
H
⁡
y
iinfssclem1.4
⊢
φ
∧
x
∈
A
→
S
=
dom
⁡
dom
⁡
H
iinfssclem1.5
⊢
Ⅎ
x
φ
Assertion
iinfssclem2
⊢
φ
→
K
Fn
⋂
x
∈
A
S
×
⋂
x
∈
A
S
Proof
Step
Hyp
Ref
Expression
1
iinfssc.1
⊢
φ
→
A
≠
∅
2
iinfssc.2
⊢
φ
∧
x
∈
A
→
H
⊆
cat
J
3
iinfssc.3
⊢
φ
→
K
=
y
∈
⋂
x
∈
A
dom
⁡
H
⟼
⋂
x
∈
A
H
⁡
y
4
iinfssclem1.4
⊢
φ
∧
x
∈
A
→
S
=
dom
⁡
dom
⁡
H
5
iinfssclem1.5
⊢
Ⅎ
x
φ
6
ovex
⊢
z
H
w
∈
V
7
6
rgenw
⊢
∀
x
∈
A
z
H
w
∈
V
8
iinexg
⊢
A
≠
∅
∧
∀
x
∈
A
z
H
w
∈
V
→
⋂
x
∈
A
z
H
w
∈
V
9
1
7
8
sylancl
⊢
φ
→
⋂
x
∈
A
z
H
w
∈
V
10
9
adantr
⊢
φ
∧
z
∈
⋂
x
∈
A
S
∧
w
∈
⋂
x
∈
A
S
→
⋂
x
∈
A
z
H
w
∈
V
11
10
ralrimivva
⊢
φ
→
∀
z
∈
⋂
x
∈
A
S
∀
w
∈
⋂
x
∈
A
S
⋂
x
∈
A
z
H
w
∈
V
12
eqid
⊢
z
∈
⋂
x
∈
A
S
,
w
∈
⋂
x
∈
A
S
⟼
⋂
x
∈
A
z
H
w
=
z
∈
⋂
x
∈
A
S
,
w
∈
⋂
x
∈
A
S
⟼
⋂
x
∈
A
z
H
w
13
12
fnmpo
⊢
∀
z
∈
⋂
x
∈
A
S
∀
w
∈
⋂
x
∈
A
S
⋂
x
∈
A
z
H
w
∈
V
→
z
∈
⋂
x
∈
A
S
,
w
∈
⋂
x
∈
A
S
⟼
⋂
x
∈
A
z
H
w
Fn
⋂
x
∈
A
S
×
⋂
x
∈
A
S
14
11
13
syl
⊢
φ
→
z
∈
⋂
x
∈
A
S
,
w
∈
⋂
x
∈
A
S
⟼
⋂
x
∈
A
z
H
w
Fn
⋂
x
∈
A
S
×
⋂
x
∈
A
S
15
1
2
3
4
5
iinfssclem1
⊢
φ
→
K
=
z
∈
⋂
x
∈
A
S
,
w
∈
⋂
x
∈
A
S
⟼
⋂
x
∈
A
z
H
w
16
15
fneq1d
⊢
φ
→
K
Fn
⋂
x
∈
A
S
×
⋂
x
∈
A
S
↔
z
∈
⋂
x
∈
A
S
,
w
∈
⋂
x
∈
A
S
⟼
⋂
x
∈
A
z
H
w
Fn
⋂
x
∈
A
S
×
⋂
x
∈
A
S
17
14
16
mpbird
⊢
φ
→
K
Fn
⋂
x
∈
A
S
×
⋂
x
∈
A
S