Metamath Proof Explorer


Theorem iinfssclem2

Description: Lemma for iinfssc . (Contributed by Zhi Wang, 31-Oct-2025)

Ref Expression
Hypotheses iinfssc.1 ( 𝜑𝐴 ≠ ∅ )
iinfssc.2 ( ( 𝜑𝑥𝐴 ) → 𝐻cat 𝐽 )
iinfssc.3 ( 𝜑𝐾 = ( 𝑦 𝑥𝐴 dom 𝐻 𝑥𝐴 ( 𝐻𝑦 ) ) )
iinfssclem1.4 ( ( 𝜑𝑥𝐴 ) → 𝑆 = dom dom 𝐻 )
iinfssclem1.5 𝑥 𝜑
Assertion iinfssclem2 ( 𝜑𝐾 Fn ( 𝑥𝐴 𝑆 × 𝑥𝐴 𝑆 ) )

Proof

Step Hyp Ref Expression
1 iinfssc.1 ( 𝜑𝐴 ≠ ∅ )
2 iinfssc.2 ( ( 𝜑𝑥𝐴 ) → 𝐻cat 𝐽 )
3 iinfssc.3 ( 𝜑𝐾 = ( 𝑦 𝑥𝐴 dom 𝐻 𝑥𝐴 ( 𝐻𝑦 ) ) )
4 iinfssclem1.4 ( ( 𝜑𝑥𝐴 ) → 𝑆 = dom dom 𝐻 )
5 iinfssclem1.5 𝑥 𝜑
6 ovex ( 𝑧 𝐻 𝑤 ) ∈ V
7 6 rgenw 𝑥𝐴 ( 𝑧 𝐻 𝑤 ) ∈ V
8 iinexg ( ( 𝐴 ≠ ∅ ∧ ∀ 𝑥𝐴 ( 𝑧 𝐻 𝑤 ) ∈ V ) → 𝑥𝐴 ( 𝑧 𝐻 𝑤 ) ∈ V )
9 1 7 8 sylancl ( 𝜑 𝑥𝐴 ( 𝑧 𝐻 𝑤 ) ∈ V )
10 9 adantr ( ( 𝜑 ∧ ( 𝑧 𝑥𝐴 𝑆𝑤 𝑥𝐴 𝑆 ) ) → 𝑥𝐴 ( 𝑧 𝐻 𝑤 ) ∈ V )
11 10 ralrimivva ( 𝜑 → ∀ 𝑧 𝑥𝐴 𝑆𝑤 𝑥𝐴 𝑆 𝑥𝐴 ( 𝑧 𝐻 𝑤 ) ∈ V )
12 eqid ( 𝑧 𝑥𝐴 𝑆 , 𝑤 𝑥𝐴 𝑆 𝑥𝐴 ( 𝑧 𝐻 𝑤 ) ) = ( 𝑧 𝑥𝐴 𝑆 , 𝑤 𝑥𝐴 𝑆 𝑥𝐴 ( 𝑧 𝐻 𝑤 ) )
13 12 fnmpo ( ∀ 𝑧 𝑥𝐴 𝑆𝑤 𝑥𝐴 𝑆 𝑥𝐴 ( 𝑧 𝐻 𝑤 ) ∈ V → ( 𝑧 𝑥𝐴 𝑆 , 𝑤 𝑥𝐴 𝑆 𝑥𝐴 ( 𝑧 𝐻 𝑤 ) ) Fn ( 𝑥𝐴 𝑆 × 𝑥𝐴 𝑆 ) )
14 11 13 syl ( 𝜑 → ( 𝑧 𝑥𝐴 𝑆 , 𝑤 𝑥𝐴 𝑆 𝑥𝐴 ( 𝑧 𝐻 𝑤 ) ) Fn ( 𝑥𝐴 𝑆 × 𝑥𝐴 𝑆 ) )
15 1 2 3 4 5 iinfssclem1 ( 𝜑𝐾 = ( 𝑧 𝑥𝐴 𝑆 , 𝑤 𝑥𝐴 𝑆 𝑥𝐴 ( 𝑧 𝐻 𝑤 ) ) )
16 15 fneq1d ( 𝜑 → ( 𝐾 Fn ( 𝑥𝐴 𝑆 × 𝑥𝐴 𝑆 ) ↔ ( 𝑧 𝑥𝐴 𝑆 , 𝑤 𝑥𝐴 𝑆 𝑥𝐴 ( 𝑧 𝐻 𝑤 ) ) Fn ( 𝑥𝐴 𝑆 × 𝑥𝐴 𝑆 ) ) )
17 14 16 mpbird ( 𝜑𝐾 Fn ( 𝑥𝐴 𝑆 × 𝑥𝐴 𝑆 ) )