| Step |
Hyp |
Ref |
Expression |
| 1 |
|
iinfssc.1 |
⊢ ( 𝜑 → 𝐴 ≠ ∅ ) |
| 2 |
|
iinfssc.2 |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → 𝐻 ⊆cat 𝐽 ) |
| 3 |
|
iinfssc.3 |
⊢ ( 𝜑 → 𝐾 = ( 𝑦 ∈ ∩ 𝑥 ∈ 𝐴 dom 𝐻 ↦ ∩ 𝑥 ∈ 𝐴 ( 𝐻 ‘ 𝑦 ) ) ) |
| 4 |
|
iinfssclem1.4 |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → 𝑆 = dom dom 𝐻 ) |
| 5 |
|
iinfssclem1.5 |
⊢ Ⅎ 𝑥 𝜑 |
| 6 |
|
iinfssclem3.x |
⊢ ( 𝜑 → 𝑋 ∈ ∩ 𝑥 ∈ 𝐴 𝑆 ) |
| 7 |
|
iinfssclem3.y |
⊢ ( 𝜑 → 𝑌 ∈ ∩ 𝑥 ∈ 𝐴 𝑆 ) |
| 8 |
1 2 3 4 5
|
iinfssclem1 |
⊢ ( 𝜑 → 𝐾 = ( 𝑧 ∈ ∩ 𝑥 ∈ 𝐴 𝑆 , 𝑤 ∈ ∩ 𝑥 ∈ 𝐴 𝑆 ↦ ∩ 𝑥 ∈ 𝐴 ( 𝑧 𝐻 𝑤 ) ) ) |
| 9 |
|
nfv |
⊢ Ⅎ 𝑥 ( 𝑧 = 𝑋 ∧ 𝑤 = 𝑌 ) |
| 10 |
5 9
|
nfan |
⊢ Ⅎ 𝑥 ( 𝜑 ∧ ( 𝑧 = 𝑋 ∧ 𝑤 = 𝑌 ) ) |
| 11 |
|
simplrl |
⊢ ( ( ( 𝜑 ∧ ( 𝑧 = 𝑋 ∧ 𝑤 = 𝑌 ) ) ∧ 𝑥 ∈ 𝐴 ) → 𝑧 = 𝑋 ) |
| 12 |
|
simplrr |
⊢ ( ( ( 𝜑 ∧ ( 𝑧 = 𝑋 ∧ 𝑤 = 𝑌 ) ) ∧ 𝑥 ∈ 𝐴 ) → 𝑤 = 𝑌 ) |
| 13 |
11 12
|
oveq12d |
⊢ ( ( ( 𝜑 ∧ ( 𝑧 = 𝑋 ∧ 𝑤 = 𝑌 ) ) ∧ 𝑥 ∈ 𝐴 ) → ( 𝑧 𝐻 𝑤 ) = ( 𝑋 𝐻 𝑌 ) ) |
| 14 |
10 13
|
iineq2d |
⊢ ( ( 𝜑 ∧ ( 𝑧 = 𝑋 ∧ 𝑤 = 𝑌 ) ) → ∩ 𝑥 ∈ 𝐴 ( 𝑧 𝐻 𝑤 ) = ∩ 𝑥 ∈ 𝐴 ( 𝑋 𝐻 𝑌 ) ) |
| 15 |
|
ovex |
⊢ ( 𝑋 𝐻 𝑌 ) ∈ V |
| 16 |
15
|
rgenw |
⊢ ∀ 𝑥 ∈ 𝐴 ( 𝑋 𝐻 𝑌 ) ∈ V |
| 17 |
|
iinexg |
⊢ ( ( 𝐴 ≠ ∅ ∧ ∀ 𝑥 ∈ 𝐴 ( 𝑋 𝐻 𝑌 ) ∈ V ) → ∩ 𝑥 ∈ 𝐴 ( 𝑋 𝐻 𝑌 ) ∈ V ) |
| 18 |
1 16 17
|
sylancl |
⊢ ( 𝜑 → ∩ 𝑥 ∈ 𝐴 ( 𝑋 𝐻 𝑌 ) ∈ V ) |
| 19 |
8 14 6 7 18
|
ovmpod |
⊢ ( 𝜑 → ( 𝑋 𝐾 𝑌 ) = ∩ 𝑥 ∈ 𝐴 ( 𝑋 𝐻 𝑌 ) ) |