| Step |
Hyp |
Ref |
Expression |
| 1 |
|
iinfssc.1 |
|- ( ph -> A =/= (/) ) |
| 2 |
|
iinfssc.2 |
|- ( ( ph /\ x e. A ) -> H C_cat J ) |
| 3 |
|
iinfssc.3 |
|- ( ph -> K = ( y e. |^|_ x e. A dom H |-> |^|_ x e. A ( H ` y ) ) ) |
| 4 |
|
iinfssclem1.4 |
|- ( ( ph /\ x e. A ) -> S = dom dom H ) |
| 5 |
|
iinfssclem1.5 |
|- F/ x ph |
| 6 |
|
iinfssclem3.x |
|- ( ph -> X e. |^|_ x e. A S ) |
| 7 |
|
iinfssclem3.y |
|- ( ph -> Y e. |^|_ x e. A S ) |
| 8 |
1 2 3 4 5
|
iinfssclem1 |
|- ( ph -> K = ( z e. |^|_ x e. A S , w e. |^|_ x e. A S |-> |^|_ x e. A ( z H w ) ) ) |
| 9 |
|
nfv |
|- F/ x ( z = X /\ w = Y ) |
| 10 |
5 9
|
nfan |
|- F/ x ( ph /\ ( z = X /\ w = Y ) ) |
| 11 |
|
simplrl |
|- ( ( ( ph /\ ( z = X /\ w = Y ) ) /\ x e. A ) -> z = X ) |
| 12 |
|
simplrr |
|- ( ( ( ph /\ ( z = X /\ w = Y ) ) /\ x e. A ) -> w = Y ) |
| 13 |
11 12
|
oveq12d |
|- ( ( ( ph /\ ( z = X /\ w = Y ) ) /\ x e. A ) -> ( z H w ) = ( X H Y ) ) |
| 14 |
10 13
|
iineq2d |
|- ( ( ph /\ ( z = X /\ w = Y ) ) -> |^|_ x e. A ( z H w ) = |^|_ x e. A ( X H Y ) ) |
| 15 |
|
ovex |
|- ( X H Y ) e. _V |
| 16 |
15
|
rgenw |
|- A. x e. A ( X H Y ) e. _V |
| 17 |
|
iinexg |
|- ( ( A =/= (/) /\ A. x e. A ( X H Y ) e. _V ) -> |^|_ x e. A ( X H Y ) e. _V ) |
| 18 |
1 16 17
|
sylancl |
|- ( ph -> |^|_ x e. A ( X H Y ) e. _V ) |
| 19 |
8 14 6 7 18
|
ovmpod |
|- ( ph -> ( X K Y ) = |^|_ x e. A ( X H Y ) ) |