Metamath Proof Explorer


Theorem iinfssclem3

Description: Lemma for iinfssc . (Contributed by Zhi Wang, 31-Oct-2025)

Ref Expression
Hypotheses iinfssc.1
|- ( ph -> A =/= (/) )
iinfssc.2
|- ( ( ph /\ x e. A ) -> H C_cat J )
iinfssc.3
|- ( ph -> K = ( y e. |^|_ x e. A dom H |-> |^|_ x e. A ( H ` y ) ) )
iinfssclem1.4
|- ( ( ph /\ x e. A ) -> S = dom dom H )
iinfssclem1.5
|- F/ x ph
iinfssclem3.x
|- ( ph -> X e. |^|_ x e. A S )
iinfssclem3.y
|- ( ph -> Y e. |^|_ x e. A S )
Assertion iinfssclem3
|- ( ph -> ( X K Y ) = |^|_ x e. A ( X H Y ) )

Proof

Step Hyp Ref Expression
1 iinfssc.1
 |-  ( ph -> A =/= (/) )
2 iinfssc.2
 |-  ( ( ph /\ x e. A ) -> H C_cat J )
3 iinfssc.3
 |-  ( ph -> K = ( y e. |^|_ x e. A dom H |-> |^|_ x e. A ( H ` y ) ) )
4 iinfssclem1.4
 |-  ( ( ph /\ x e. A ) -> S = dom dom H )
5 iinfssclem1.5
 |-  F/ x ph
6 iinfssclem3.x
 |-  ( ph -> X e. |^|_ x e. A S )
7 iinfssclem3.y
 |-  ( ph -> Y e. |^|_ x e. A S )
8 1 2 3 4 5 iinfssclem1
 |-  ( ph -> K = ( z e. |^|_ x e. A S , w e. |^|_ x e. A S |-> |^|_ x e. A ( z H w ) ) )
9 nfv
 |-  F/ x ( z = X /\ w = Y )
10 5 9 nfan
 |-  F/ x ( ph /\ ( z = X /\ w = Y ) )
11 simplrl
 |-  ( ( ( ph /\ ( z = X /\ w = Y ) ) /\ x e. A ) -> z = X )
12 simplrr
 |-  ( ( ( ph /\ ( z = X /\ w = Y ) ) /\ x e. A ) -> w = Y )
13 11 12 oveq12d
 |-  ( ( ( ph /\ ( z = X /\ w = Y ) ) /\ x e. A ) -> ( z H w ) = ( X H Y ) )
14 10 13 iineq2d
 |-  ( ( ph /\ ( z = X /\ w = Y ) ) -> |^|_ x e. A ( z H w ) = |^|_ x e. A ( X H Y ) )
15 ovex
 |-  ( X H Y ) e. _V
16 15 rgenw
 |-  A. x e. A ( X H Y ) e. _V
17 iinexg
 |-  ( ( A =/= (/) /\ A. x e. A ( X H Y ) e. _V ) -> |^|_ x e. A ( X H Y ) e. _V )
18 1 16 17 sylancl
 |-  ( ph -> |^|_ x e. A ( X H Y ) e. _V )
19 8 14 6 7 18 ovmpod
 |-  ( ph -> ( X K Y ) = |^|_ x e. A ( X H Y ) )