Metamath Proof Explorer


Theorem infsubc2d

Description: The intersection of two subcategories is a subcategory. (Contributed by Zhi Wang, 31-Oct-2025)

Ref Expression
Hypotheses infsubc2d.1 φ H Fn S × S
infsubc2d.2 φ J Fn T × T
infsubc2d.3 φ H Subcat C
infsubc2d.4 φ J Subcat C
Assertion infsubc2d φ x S T , y S T x H y x J y Subcat C

Proof

Step Hyp Ref Expression
1 infsubc2d.1 φ H Fn S × S
2 infsubc2d.2 φ J Fn T × T
3 infsubc2d.3 φ H Subcat C
4 infsubc2d.4 φ J Subcat C
5 1 fndmd φ dom H = S × S
6 5 dmeqd φ dom dom H = dom S × S
7 dmxpid dom S × S = S
8 6 7 eqtrdi φ dom dom H = S
9 2 fndmd φ dom J = T × T
10 9 dmeqd φ dom dom J = dom T × T
11 dmxpid dom T × T = T
12 10 11 eqtrdi φ dom dom J = T
13 8 12 ineq12d φ dom dom H dom dom J = S T
14 mpoeq12 dom dom H dom dom J = S T dom dom H dom dom J = S T x dom dom H dom dom J , y dom dom H dom dom J x H y x J y = x S T , y S T x H y x J y
15 13 13 14 syl2anc φ x dom dom H dom dom J , y dom dom H dom dom J x H y x J y = x S T , y S T x H y x J y
16 infsubc2 H Subcat C J Subcat C x dom dom H dom dom J , y dom dom H dom dom J x H y x J y Subcat C
17 3 4 16 syl2anc φ x dom dom H dom dom J , y dom dom H dom dom J x H y x J y Subcat C
18 15 17 eqeltrrd φ x S T , y S T x H y x J y Subcat C