Metamath Proof Explorer


Theorem infsubc2d

Description: The intersection of two subcategories is a subcategory. (Contributed by Zhi Wang, 31-Oct-2025)

Ref Expression
Hypotheses infsubc2d.1 ( 𝜑𝐻 Fn ( 𝑆 × 𝑆 ) )
infsubc2d.2 ( 𝜑𝐽 Fn ( 𝑇 × 𝑇 ) )
infsubc2d.3 ( 𝜑𝐻 ∈ ( Subcat ‘ 𝐶 ) )
infsubc2d.4 ( 𝜑𝐽 ∈ ( Subcat ‘ 𝐶 ) )
Assertion infsubc2d ( 𝜑 → ( 𝑥 ∈ ( 𝑆𝑇 ) , 𝑦 ∈ ( 𝑆𝑇 ) ↦ ( ( 𝑥 𝐻 𝑦 ) ∩ ( 𝑥 𝐽 𝑦 ) ) ) ∈ ( Subcat ‘ 𝐶 ) )

Proof

Step Hyp Ref Expression
1 infsubc2d.1 ( 𝜑𝐻 Fn ( 𝑆 × 𝑆 ) )
2 infsubc2d.2 ( 𝜑𝐽 Fn ( 𝑇 × 𝑇 ) )
3 infsubc2d.3 ( 𝜑𝐻 ∈ ( Subcat ‘ 𝐶 ) )
4 infsubc2d.4 ( 𝜑𝐽 ∈ ( Subcat ‘ 𝐶 ) )
5 1 fndmd ( 𝜑 → dom 𝐻 = ( 𝑆 × 𝑆 ) )
6 5 dmeqd ( 𝜑 → dom dom 𝐻 = dom ( 𝑆 × 𝑆 ) )
7 dmxpid dom ( 𝑆 × 𝑆 ) = 𝑆
8 6 7 eqtrdi ( 𝜑 → dom dom 𝐻 = 𝑆 )
9 2 fndmd ( 𝜑 → dom 𝐽 = ( 𝑇 × 𝑇 ) )
10 9 dmeqd ( 𝜑 → dom dom 𝐽 = dom ( 𝑇 × 𝑇 ) )
11 dmxpid dom ( 𝑇 × 𝑇 ) = 𝑇
12 10 11 eqtrdi ( 𝜑 → dom dom 𝐽 = 𝑇 )
13 8 12 ineq12d ( 𝜑 → ( dom dom 𝐻 ∩ dom dom 𝐽 ) = ( 𝑆𝑇 ) )
14 mpoeq12 ( ( ( dom dom 𝐻 ∩ dom dom 𝐽 ) = ( 𝑆𝑇 ) ∧ ( dom dom 𝐻 ∩ dom dom 𝐽 ) = ( 𝑆𝑇 ) ) → ( 𝑥 ∈ ( dom dom 𝐻 ∩ dom dom 𝐽 ) , 𝑦 ∈ ( dom dom 𝐻 ∩ dom dom 𝐽 ) ↦ ( ( 𝑥 𝐻 𝑦 ) ∩ ( 𝑥 𝐽 𝑦 ) ) ) = ( 𝑥 ∈ ( 𝑆𝑇 ) , 𝑦 ∈ ( 𝑆𝑇 ) ↦ ( ( 𝑥 𝐻 𝑦 ) ∩ ( 𝑥 𝐽 𝑦 ) ) ) )
15 13 13 14 syl2anc ( 𝜑 → ( 𝑥 ∈ ( dom dom 𝐻 ∩ dom dom 𝐽 ) , 𝑦 ∈ ( dom dom 𝐻 ∩ dom dom 𝐽 ) ↦ ( ( 𝑥 𝐻 𝑦 ) ∩ ( 𝑥 𝐽 𝑦 ) ) ) = ( 𝑥 ∈ ( 𝑆𝑇 ) , 𝑦 ∈ ( 𝑆𝑇 ) ↦ ( ( 𝑥 𝐻 𝑦 ) ∩ ( 𝑥 𝐽 𝑦 ) ) ) )
16 infsubc2 ( ( 𝐻 ∈ ( Subcat ‘ 𝐶 ) ∧ 𝐽 ∈ ( Subcat ‘ 𝐶 ) ) → ( 𝑥 ∈ ( dom dom 𝐻 ∩ dom dom 𝐽 ) , 𝑦 ∈ ( dom dom 𝐻 ∩ dom dom 𝐽 ) ↦ ( ( 𝑥 𝐻 𝑦 ) ∩ ( 𝑥 𝐽 𝑦 ) ) ) ∈ ( Subcat ‘ 𝐶 ) )
17 3 4 16 syl2anc ( 𝜑 → ( 𝑥 ∈ ( dom dom 𝐻 ∩ dom dom 𝐽 ) , 𝑦 ∈ ( dom dom 𝐻 ∩ dom dom 𝐽 ) ↦ ( ( 𝑥 𝐻 𝑦 ) ∩ ( 𝑥 𝐽 𝑦 ) ) ) ∈ ( Subcat ‘ 𝐶 ) )
18 15 17 eqeltrrd ( 𝜑 → ( 𝑥 ∈ ( 𝑆𝑇 ) , 𝑦 ∈ ( 𝑆𝑇 ) ↦ ( ( 𝑥 𝐻 𝑦 ) ∩ ( 𝑥 𝐽 𝑦 ) ) ) ∈ ( Subcat ‘ 𝐶 ) )