| Step |
Hyp |
Ref |
Expression |
| 1 |
|
infsubc2d.1 |
⊢ ( 𝜑 → 𝐻 Fn ( 𝑆 × 𝑆 ) ) |
| 2 |
|
infsubc2d.2 |
⊢ ( 𝜑 → 𝐽 Fn ( 𝑇 × 𝑇 ) ) |
| 3 |
|
infsubc2d.3 |
⊢ ( 𝜑 → 𝐻 ∈ ( Subcat ‘ 𝐶 ) ) |
| 4 |
|
infsubc2d.4 |
⊢ ( 𝜑 → 𝐽 ∈ ( Subcat ‘ 𝐶 ) ) |
| 5 |
1
|
fndmd |
⊢ ( 𝜑 → dom 𝐻 = ( 𝑆 × 𝑆 ) ) |
| 6 |
5
|
dmeqd |
⊢ ( 𝜑 → dom dom 𝐻 = dom ( 𝑆 × 𝑆 ) ) |
| 7 |
|
dmxpid |
⊢ dom ( 𝑆 × 𝑆 ) = 𝑆 |
| 8 |
6 7
|
eqtrdi |
⊢ ( 𝜑 → dom dom 𝐻 = 𝑆 ) |
| 9 |
2
|
fndmd |
⊢ ( 𝜑 → dom 𝐽 = ( 𝑇 × 𝑇 ) ) |
| 10 |
9
|
dmeqd |
⊢ ( 𝜑 → dom dom 𝐽 = dom ( 𝑇 × 𝑇 ) ) |
| 11 |
|
dmxpid |
⊢ dom ( 𝑇 × 𝑇 ) = 𝑇 |
| 12 |
10 11
|
eqtrdi |
⊢ ( 𝜑 → dom dom 𝐽 = 𝑇 ) |
| 13 |
8 12
|
ineq12d |
⊢ ( 𝜑 → ( dom dom 𝐻 ∩ dom dom 𝐽 ) = ( 𝑆 ∩ 𝑇 ) ) |
| 14 |
|
mpoeq12 |
⊢ ( ( ( dom dom 𝐻 ∩ dom dom 𝐽 ) = ( 𝑆 ∩ 𝑇 ) ∧ ( dom dom 𝐻 ∩ dom dom 𝐽 ) = ( 𝑆 ∩ 𝑇 ) ) → ( 𝑥 ∈ ( dom dom 𝐻 ∩ dom dom 𝐽 ) , 𝑦 ∈ ( dom dom 𝐻 ∩ dom dom 𝐽 ) ↦ ( ( 𝑥 𝐻 𝑦 ) ∩ ( 𝑥 𝐽 𝑦 ) ) ) = ( 𝑥 ∈ ( 𝑆 ∩ 𝑇 ) , 𝑦 ∈ ( 𝑆 ∩ 𝑇 ) ↦ ( ( 𝑥 𝐻 𝑦 ) ∩ ( 𝑥 𝐽 𝑦 ) ) ) ) |
| 15 |
13 13 14
|
syl2anc |
⊢ ( 𝜑 → ( 𝑥 ∈ ( dom dom 𝐻 ∩ dom dom 𝐽 ) , 𝑦 ∈ ( dom dom 𝐻 ∩ dom dom 𝐽 ) ↦ ( ( 𝑥 𝐻 𝑦 ) ∩ ( 𝑥 𝐽 𝑦 ) ) ) = ( 𝑥 ∈ ( 𝑆 ∩ 𝑇 ) , 𝑦 ∈ ( 𝑆 ∩ 𝑇 ) ↦ ( ( 𝑥 𝐻 𝑦 ) ∩ ( 𝑥 𝐽 𝑦 ) ) ) ) |
| 16 |
|
infsubc2 |
⊢ ( ( 𝐻 ∈ ( Subcat ‘ 𝐶 ) ∧ 𝐽 ∈ ( Subcat ‘ 𝐶 ) ) → ( 𝑥 ∈ ( dom dom 𝐻 ∩ dom dom 𝐽 ) , 𝑦 ∈ ( dom dom 𝐻 ∩ dom dom 𝐽 ) ↦ ( ( 𝑥 𝐻 𝑦 ) ∩ ( 𝑥 𝐽 𝑦 ) ) ) ∈ ( Subcat ‘ 𝐶 ) ) |
| 17 |
3 4 16
|
syl2anc |
⊢ ( 𝜑 → ( 𝑥 ∈ ( dom dom 𝐻 ∩ dom dom 𝐽 ) , 𝑦 ∈ ( dom dom 𝐻 ∩ dom dom 𝐽 ) ↦ ( ( 𝑥 𝐻 𝑦 ) ∩ ( 𝑥 𝐽 𝑦 ) ) ) ∈ ( Subcat ‘ 𝐶 ) ) |
| 18 |
15 17
|
eqeltrrd |
⊢ ( 𝜑 → ( 𝑥 ∈ ( 𝑆 ∩ 𝑇 ) , 𝑦 ∈ ( 𝑆 ∩ 𝑇 ) ↦ ( ( 𝑥 𝐻 𝑦 ) ∩ ( 𝑥 𝐽 𝑦 ) ) ) ∈ ( Subcat ‘ 𝐶 ) ) |