Description: Lemma for discsubc . (Contributed by Zhi Wang, 1-Nov-2025)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | discsubc.j | ⊢ 𝐽 = ( 𝑥 ∈ 𝑆 , 𝑦 ∈ 𝑆 ↦ if ( 𝑥 = 𝑦 , { ( 𝐼 ‘ 𝑥 ) } , ∅ ) ) | |
| Assertion | discsubclem | ⊢ 𝐽 Fn ( 𝑆 × 𝑆 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | discsubc.j | ⊢ 𝐽 = ( 𝑥 ∈ 𝑆 , 𝑦 ∈ 𝑆 ↦ if ( 𝑥 = 𝑦 , { ( 𝐼 ‘ 𝑥 ) } , ∅ ) ) | |
| 2 | snex | ⊢ { ( 𝐼 ‘ 𝑥 ) } ∈ V | |
| 3 | 0ex | ⊢ ∅ ∈ V | |
| 4 | 2 3 | ifex | ⊢ if ( 𝑥 = 𝑦 , { ( 𝐼 ‘ 𝑥 ) } , ∅ ) ∈ V |
| 5 | 1 4 | fnmpoi | ⊢ 𝐽 Fn ( 𝑆 × 𝑆 ) |