Description: Lemma for discsubc . (Contributed by Zhi Wang, 1-Nov-2025)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | discsubc.j | |- J = ( x e. S , y e. S |-> if ( x = y , { ( I ` x ) } , (/) ) ) |
|
| Assertion | discsubclem | |- J Fn ( S X. S ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | discsubc.j | |- J = ( x e. S , y e. S |-> if ( x = y , { ( I ` x ) } , (/) ) ) |
|
| 2 | snex | |- { ( I ` x ) } e. _V |
|
| 3 | 0ex | |- (/) e. _V |
|
| 4 | 2 3 | ifex | |- if ( x = y , { ( I ` x ) } , (/) ) e. _V |
| 5 | 1 4 | fnmpoi | |- J Fn ( S X. S ) |