| Step |
Hyp |
Ref |
Expression |
| 1 |
|
discsubc.j |
|- J = ( x e. S , y e. S |-> if ( x = y , { ( I ` x ) } , (/) ) ) |
| 2 |
|
discsubc.b |
|- B = ( Base ` C ) |
| 3 |
|
discsubc.i |
|- I = ( Id ` C ) |
| 4 |
|
discsubc.s |
|- ( ph -> S C_ B ) |
| 5 |
|
discsubc.c |
|- ( ph -> C e. Cat ) |
| 6 |
|
eqeq12 |
|- ( ( x = a /\ y = b ) -> ( x = y <-> a = b ) ) |
| 7 |
|
simpl |
|- ( ( x = a /\ y = b ) -> x = a ) |
| 8 |
7
|
fveq2d |
|- ( ( x = a /\ y = b ) -> ( I ` x ) = ( I ` a ) ) |
| 9 |
8
|
sneqd |
|- ( ( x = a /\ y = b ) -> { ( I ` x ) } = { ( I ` a ) } ) |
| 10 |
6 9
|
ifbieq1d |
|- ( ( x = a /\ y = b ) -> if ( x = y , { ( I ` x ) } , (/) ) = if ( a = b , { ( I ` a ) } , (/) ) ) |
| 11 |
|
snex |
|- { ( I ` a ) } e. _V |
| 12 |
|
0ex |
|- (/) e. _V |
| 13 |
11 12
|
ifex |
|- if ( a = b , { ( I ` a ) } , (/) ) e. _V |
| 14 |
10 1 13
|
ovmpoa |
|- ( ( a e. S /\ b e. S ) -> ( a J b ) = if ( a = b , { ( I ` a ) } , (/) ) ) |
| 15 |
14
|
adantl |
|- ( ( ph /\ ( a e. S /\ b e. S ) ) -> ( a J b ) = if ( a = b , { ( I ` a ) } , (/) ) ) |
| 16 |
|
sseq1 |
|- ( { ( I ` a ) } = if ( a = b , { ( I ` a ) } , (/) ) -> ( { ( I ` a ) } C_ ( a ( Homf ` C ) b ) <-> if ( a = b , { ( I ` a ) } , (/) ) C_ ( a ( Homf ` C ) b ) ) ) |
| 17 |
|
sseq1 |
|- ( (/) = if ( a = b , { ( I ` a ) } , (/) ) -> ( (/) C_ ( a ( Homf ` C ) b ) <-> if ( a = b , { ( I ` a ) } , (/) ) C_ ( a ( Homf ` C ) b ) ) ) |
| 18 |
|
eqid |
|- ( Hom ` C ) = ( Hom ` C ) |
| 19 |
5
|
ad2antrr |
|- ( ( ( ph /\ ( a e. S /\ b e. S ) ) /\ a = b ) -> C e. Cat ) |
| 20 |
4
|
ad2antrr |
|- ( ( ( ph /\ ( a e. S /\ b e. S ) ) /\ a = b ) -> S C_ B ) |
| 21 |
|
simplrl |
|- ( ( ( ph /\ ( a e. S /\ b e. S ) ) /\ a = b ) -> a e. S ) |
| 22 |
20 21
|
sseldd |
|- ( ( ( ph /\ ( a e. S /\ b e. S ) ) /\ a = b ) -> a e. B ) |
| 23 |
2 18 3 19 22
|
catidcl |
|- ( ( ( ph /\ ( a e. S /\ b e. S ) ) /\ a = b ) -> ( I ` a ) e. ( a ( Hom ` C ) a ) ) |
| 24 |
|
eqid |
|- ( Homf ` C ) = ( Homf ` C ) |
| 25 |
24 2 18 22 22
|
homfval |
|- ( ( ( ph /\ ( a e. S /\ b e. S ) ) /\ a = b ) -> ( a ( Homf ` C ) a ) = ( a ( Hom ` C ) a ) ) |
| 26 |
|
simpr |
|- ( ( ( ph /\ ( a e. S /\ b e. S ) ) /\ a = b ) -> a = b ) |
| 27 |
26
|
oveq2d |
|- ( ( ( ph /\ ( a e. S /\ b e. S ) ) /\ a = b ) -> ( a ( Homf ` C ) a ) = ( a ( Homf ` C ) b ) ) |
| 28 |
25 27
|
eqtr3d |
|- ( ( ( ph /\ ( a e. S /\ b e. S ) ) /\ a = b ) -> ( a ( Hom ` C ) a ) = ( a ( Homf ` C ) b ) ) |
| 29 |
23 28
|
eleqtrd |
|- ( ( ( ph /\ ( a e. S /\ b e. S ) ) /\ a = b ) -> ( I ` a ) e. ( a ( Homf ` C ) b ) ) |
| 30 |
29
|
snssd |
|- ( ( ( ph /\ ( a e. S /\ b e. S ) ) /\ a = b ) -> { ( I ` a ) } C_ ( a ( Homf ` C ) b ) ) |
| 31 |
|
0ss |
|- (/) C_ ( a ( Homf ` C ) b ) |
| 32 |
31
|
a1i |
|- ( ( ( ph /\ ( a e. S /\ b e. S ) ) /\ -. a = b ) -> (/) C_ ( a ( Homf ` C ) b ) ) |
| 33 |
16 17 30 32
|
ifbothda |
|- ( ( ph /\ ( a e. S /\ b e. S ) ) -> if ( a = b , { ( I ` a ) } , (/) ) C_ ( a ( Homf ` C ) b ) ) |
| 34 |
15 33
|
eqsstrd |
|- ( ( ph /\ ( a e. S /\ b e. S ) ) -> ( a J b ) C_ ( a ( Homf ` C ) b ) ) |
| 35 |
34
|
ralrimivva |
|- ( ph -> A. a e. S A. b e. S ( a J b ) C_ ( a ( Homf ` C ) b ) ) |
| 36 |
1
|
discsubclem |
|- J Fn ( S X. S ) |
| 37 |
36
|
a1i |
|- ( ph -> J Fn ( S X. S ) ) |
| 38 |
24 2
|
homffn |
|- ( Homf ` C ) Fn ( B X. B ) |
| 39 |
38
|
a1i |
|- ( ph -> ( Homf ` C ) Fn ( B X. B ) ) |
| 40 |
2
|
fvexi |
|- B e. _V |
| 41 |
40
|
a1i |
|- ( ph -> B e. _V ) |
| 42 |
37 39 41
|
isssc |
|- ( ph -> ( J C_cat ( Homf ` C ) <-> ( S C_ B /\ A. a e. S A. b e. S ( a J b ) C_ ( a ( Homf ` C ) b ) ) ) ) |
| 43 |
4 35 42
|
mpbir2and |
|- ( ph -> J C_cat ( Homf ` C ) ) |
| 44 |
|
fvex |
|- ( I ` a ) e. _V |
| 45 |
44
|
snid |
|- ( I ` a ) e. { ( I ` a ) } |
| 46 |
|
simpr |
|- ( ( ph /\ a e. S ) -> a e. S ) |
| 47 |
|
equtr2 |
|- ( ( x = a /\ y = a ) -> x = y ) |
| 48 |
47
|
iftrued |
|- ( ( x = a /\ y = a ) -> if ( x = y , { ( I ` x ) } , (/) ) = { ( I ` x ) } ) |
| 49 |
|
simpl |
|- ( ( x = a /\ y = a ) -> x = a ) |
| 50 |
49
|
fveq2d |
|- ( ( x = a /\ y = a ) -> ( I ` x ) = ( I ` a ) ) |
| 51 |
50
|
sneqd |
|- ( ( x = a /\ y = a ) -> { ( I ` x ) } = { ( I ` a ) } ) |
| 52 |
48 51
|
eqtrd |
|- ( ( x = a /\ y = a ) -> if ( x = y , { ( I ` x ) } , (/) ) = { ( I ` a ) } ) |
| 53 |
52 1 11
|
ovmpoa |
|- ( ( a e. S /\ a e. S ) -> ( a J a ) = { ( I ` a ) } ) |
| 54 |
46 46 53
|
syl2anc |
|- ( ( ph /\ a e. S ) -> ( a J a ) = { ( I ` a ) } ) |
| 55 |
45 54
|
eleqtrrid |
|- ( ( ph /\ a e. S ) -> ( I ` a ) e. ( a J a ) ) |
| 56 |
45
|
a1i |
|- ( ( ( ( ph /\ a e. S ) /\ ( b e. S /\ c e. S ) ) /\ ( f e. ( a J b ) /\ g e. ( b J c ) ) ) -> ( I ` a ) e. { ( I ` a ) } ) |
| 57 |
|
simprl |
|- ( ( ( ( ph /\ a e. S ) /\ ( b e. S /\ c e. S ) ) /\ ( f e. ( a J b ) /\ g e. ( b J c ) ) ) -> f e. ( a J b ) ) |
| 58 |
46
|
ad2antrr |
|- ( ( ( ( ph /\ a e. S ) /\ ( b e. S /\ c e. S ) ) /\ ( f e. ( a J b ) /\ g e. ( b J c ) ) ) -> a e. S ) |
| 59 |
|
simplrl |
|- ( ( ( ( ph /\ a e. S ) /\ ( b e. S /\ c e. S ) ) /\ ( f e. ( a J b ) /\ g e. ( b J c ) ) ) -> b e. S ) |
| 60 |
58 59 14
|
syl2anc |
|- ( ( ( ( ph /\ a e. S ) /\ ( b e. S /\ c e. S ) ) /\ ( f e. ( a J b ) /\ g e. ( b J c ) ) ) -> ( a J b ) = if ( a = b , { ( I ` a ) } , (/) ) ) |
| 61 |
57 60
|
eleqtrd |
|- ( ( ( ( ph /\ a e. S ) /\ ( b e. S /\ c e. S ) ) /\ ( f e. ( a J b ) /\ g e. ( b J c ) ) ) -> f e. if ( a = b , { ( I ` a ) } , (/) ) ) |
| 62 |
61
|
ne0d |
|- ( ( ( ( ph /\ a e. S ) /\ ( b e. S /\ c e. S ) ) /\ ( f e. ( a J b ) /\ g e. ( b J c ) ) ) -> if ( a = b , { ( I ` a ) } , (/) ) =/= (/) ) |
| 63 |
|
iffalse |
|- ( -. a = b -> if ( a = b , { ( I ` a ) } , (/) ) = (/) ) |
| 64 |
63
|
necon1ai |
|- ( if ( a = b , { ( I ` a ) } , (/) ) =/= (/) -> a = b ) |
| 65 |
62 64
|
syl |
|- ( ( ( ( ph /\ a e. S ) /\ ( b e. S /\ c e. S ) ) /\ ( f e. ( a J b ) /\ g e. ( b J c ) ) ) -> a = b ) |
| 66 |
65
|
opeq2d |
|- ( ( ( ( ph /\ a e. S ) /\ ( b e. S /\ c e. S ) ) /\ ( f e. ( a J b ) /\ g e. ( b J c ) ) ) -> <. a , a >. = <. a , b >. ) |
| 67 |
|
simprr |
|- ( ( ( ( ph /\ a e. S ) /\ ( b e. S /\ c e. S ) ) /\ ( f e. ( a J b ) /\ g e. ( b J c ) ) ) -> g e. ( b J c ) ) |
| 68 |
|
eqeq12 |
|- ( ( x = b /\ y = c ) -> ( x = y <-> b = c ) ) |
| 69 |
|
simpl |
|- ( ( x = b /\ y = c ) -> x = b ) |
| 70 |
69
|
fveq2d |
|- ( ( x = b /\ y = c ) -> ( I ` x ) = ( I ` b ) ) |
| 71 |
70
|
sneqd |
|- ( ( x = b /\ y = c ) -> { ( I ` x ) } = { ( I ` b ) } ) |
| 72 |
68 71
|
ifbieq1d |
|- ( ( x = b /\ y = c ) -> if ( x = y , { ( I ` x ) } , (/) ) = if ( b = c , { ( I ` b ) } , (/) ) ) |
| 73 |
|
snex |
|- { ( I ` b ) } e. _V |
| 74 |
73 12
|
ifex |
|- if ( b = c , { ( I ` b ) } , (/) ) e. _V |
| 75 |
72 1 74
|
ovmpoa |
|- ( ( b e. S /\ c e. S ) -> ( b J c ) = if ( b = c , { ( I ` b ) } , (/) ) ) |
| 76 |
75
|
ad2antlr |
|- ( ( ( ( ph /\ a e. S ) /\ ( b e. S /\ c e. S ) ) /\ ( f e. ( a J b ) /\ g e. ( b J c ) ) ) -> ( b J c ) = if ( b = c , { ( I ` b ) } , (/) ) ) |
| 77 |
67 76
|
eleqtrd |
|- ( ( ( ( ph /\ a e. S ) /\ ( b e. S /\ c e. S ) ) /\ ( f e. ( a J b ) /\ g e. ( b J c ) ) ) -> g e. if ( b = c , { ( I ` b ) } , (/) ) ) |
| 78 |
77
|
ne0d |
|- ( ( ( ( ph /\ a e. S ) /\ ( b e. S /\ c e. S ) ) /\ ( f e. ( a J b ) /\ g e. ( b J c ) ) ) -> if ( b = c , { ( I ` b ) } , (/) ) =/= (/) ) |
| 79 |
|
iffalse |
|- ( -. b = c -> if ( b = c , { ( I ` b ) } , (/) ) = (/) ) |
| 80 |
79
|
necon1ai |
|- ( if ( b = c , { ( I ` b ) } , (/) ) =/= (/) -> b = c ) |
| 81 |
78 80
|
syl |
|- ( ( ( ( ph /\ a e. S ) /\ ( b e. S /\ c e. S ) ) /\ ( f e. ( a J b ) /\ g e. ( b J c ) ) ) -> b = c ) |
| 82 |
65 81
|
eqtrd |
|- ( ( ( ( ph /\ a e. S ) /\ ( b e. S /\ c e. S ) ) /\ ( f e. ( a J b ) /\ g e. ( b J c ) ) ) -> a = c ) |
| 83 |
66 82
|
oveq12d |
|- ( ( ( ( ph /\ a e. S ) /\ ( b e. S /\ c e. S ) ) /\ ( f e. ( a J b ) /\ g e. ( b J c ) ) ) -> ( <. a , a >. ( comp ` C ) a ) = ( <. a , b >. ( comp ` C ) c ) ) |
| 84 |
83
|
eqcomd |
|- ( ( ( ( ph /\ a e. S ) /\ ( b e. S /\ c e. S ) ) /\ ( f e. ( a J b ) /\ g e. ( b J c ) ) ) -> ( <. a , b >. ( comp ` C ) c ) = ( <. a , a >. ( comp ` C ) a ) ) |
| 85 |
81
|
iftrued |
|- ( ( ( ( ph /\ a e. S ) /\ ( b e. S /\ c e. S ) ) /\ ( f e. ( a J b ) /\ g e. ( b J c ) ) ) -> if ( b = c , { ( I ` b ) } , (/) ) = { ( I ` b ) } ) |
| 86 |
77 85
|
eleqtrd |
|- ( ( ( ( ph /\ a e. S ) /\ ( b e. S /\ c e. S ) ) /\ ( f e. ( a J b ) /\ g e. ( b J c ) ) ) -> g e. { ( I ` b ) } ) |
| 87 |
86
|
elsnd |
|- ( ( ( ( ph /\ a e. S ) /\ ( b e. S /\ c e. S ) ) /\ ( f e. ( a J b ) /\ g e. ( b J c ) ) ) -> g = ( I ` b ) ) |
| 88 |
65
|
fveq2d |
|- ( ( ( ( ph /\ a e. S ) /\ ( b e. S /\ c e. S ) ) /\ ( f e. ( a J b ) /\ g e. ( b J c ) ) ) -> ( I ` a ) = ( I ` b ) ) |
| 89 |
87 88
|
eqtr4d |
|- ( ( ( ( ph /\ a e. S ) /\ ( b e. S /\ c e. S ) ) /\ ( f e. ( a J b ) /\ g e. ( b J c ) ) ) -> g = ( I ` a ) ) |
| 90 |
65
|
iftrued |
|- ( ( ( ( ph /\ a e. S ) /\ ( b e. S /\ c e. S ) ) /\ ( f e. ( a J b ) /\ g e. ( b J c ) ) ) -> if ( a = b , { ( I ` a ) } , (/) ) = { ( I ` a ) } ) |
| 91 |
61 90
|
eleqtrd |
|- ( ( ( ( ph /\ a e. S ) /\ ( b e. S /\ c e. S ) ) /\ ( f e. ( a J b ) /\ g e. ( b J c ) ) ) -> f e. { ( I ` a ) } ) |
| 92 |
91
|
elsnd |
|- ( ( ( ( ph /\ a e. S ) /\ ( b e. S /\ c e. S ) ) /\ ( f e. ( a J b ) /\ g e. ( b J c ) ) ) -> f = ( I ` a ) ) |
| 93 |
84 89 92
|
oveq123d |
|- ( ( ( ( ph /\ a e. S ) /\ ( b e. S /\ c e. S ) ) /\ ( f e. ( a J b ) /\ g e. ( b J c ) ) ) -> ( g ( <. a , b >. ( comp ` C ) c ) f ) = ( ( I ` a ) ( <. a , a >. ( comp ` C ) a ) ( I ` a ) ) ) |
| 94 |
5
|
ad3antrrr |
|- ( ( ( ( ph /\ a e. S ) /\ ( b e. S /\ c e. S ) ) /\ ( f e. ( a J b ) /\ g e. ( b J c ) ) ) -> C e. Cat ) |
| 95 |
4
|
ad3antrrr |
|- ( ( ( ( ph /\ a e. S ) /\ ( b e. S /\ c e. S ) ) /\ ( f e. ( a J b ) /\ g e. ( b J c ) ) ) -> S C_ B ) |
| 96 |
95 58
|
sseldd |
|- ( ( ( ( ph /\ a e. S ) /\ ( b e. S /\ c e. S ) ) /\ ( f e. ( a J b ) /\ g e. ( b J c ) ) ) -> a e. B ) |
| 97 |
|
eqid |
|- ( comp ` C ) = ( comp ` C ) |
| 98 |
2 18 3 94 96
|
catidcl |
|- ( ( ( ( ph /\ a e. S ) /\ ( b e. S /\ c e. S ) ) /\ ( f e. ( a J b ) /\ g e. ( b J c ) ) ) -> ( I ` a ) e. ( a ( Hom ` C ) a ) ) |
| 99 |
2 18 3 94 96 97 96 98
|
catlid |
|- ( ( ( ( ph /\ a e. S ) /\ ( b e. S /\ c e. S ) ) /\ ( f e. ( a J b ) /\ g e. ( b J c ) ) ) -> ( ( I ` a ) ( <. a , a >. ( comp ` C ) a ) ( I ` a ) ) = ( I ` a ) ) |
| 100 |
93 99
|
eqtrd |
|- ( ( ( ( ph /\ a e. S ) /\ ( b e. S /\ c e. S ) ) /\ ( f e. ( a J b ) /\ g e. ( b J c ) ) ) -> ( g ( <. a , b >. ( comp ` C ) c ) f ) = ( I ` a ) ) |
| 101 |
82
|
oveq2d |
|- ( ( ( ( ph /\ a e. S ) /\ ( b e. S /\ c e. S ) ) /\ ( f e. ( a J b ) /\ g e. ( b J c ) ) ) -> ( a J a ) = ( a J c ) ) |
| 102 |
58 58 53
|
syl2anc |
|- ( ( ( ( ph /\ a e. S ) /\ ( b e. S /\ c e. S ) ) /\ ( f e. ( a J b ) /\ g e. ( b J c ) ) ) -> ( a J a ) = { ( I ` a ) } ) |
| 103 |
101 102
|
eqtr3d |
|- ( ( ( ( ph /\ a e. S ) /\ ( b e. S /\ c e. S ) ) /\ ( f e. ( a J b ) /\ g e. ( b J c ) ) ) -> ( a J c ) = { ( I ` a ) } ) |
| 104 |
56 100 103
|
3eltr4d |
|- ( ( ( ( ph /\ a e. S ) /\ ( b e. S /\ c e. S ) ) /\ ( f e. ( a J b ) /\ g e. ( b J c ) ) ) -> ( g ( <. a , b >. ( comp ` C ) c ) f ) e. ( a J c ) ) |
| 105 |
104
|
ralrimivva |
|- ( ( ( ph /\ a e. S ) /\ ( b e. S /\ c e. S ) ) -> A. f e. ( a J b ) A. g e. ( b J c ) ( g ( <. a , b >. ( comp ` C ) c ) f ) e. ( a J c ) ) |
| 106 |
105
|
ralrimivva |
|- ( ( ph /\ a e. S ) -> A. b e. S A. c e. S A. f e. ( a J b ) A. g e. ( b J c ) ( g ( <. a , b >. ( comp ` C ) c ) f ) e. ( a J c ) ) |
| 107 |
55 106
|
jca |
|- ( ( ph /\ a e. S ) -> ( ( I ` a ) e. ( a J a ) /\ A. b e. S A. c e. S A. f e. ( a J b ) A. g e. ( b J c ) ( g ( <. a , b >. ( comp ` C ) c ) f ) e. ( a J c ) ) ) |
| 108 |
107
|
ralrimiva |
|- ( ph -> A. a e. S ( ( I ` a ) e. ( a J a ) /\ A. b e. S A. c e. S A. f e. ( a J b ) A. g e. ( b J c ) ( g ( <. a , b >. ( comp ` C ) c ) f ) e. ( a J c ) ) ) |
| 109 |
24 3 97 5 37
|
issubc2 |
|- ( ph -> ( J e. ( Subcat ` C ) <-> ( J C_cat ( Homf ` C ) /\ A. a e. S ( ( I ` a ) e. ( a J a ) /\ A. b e. S A. c e. S A. f e. ( a J b ) A. g e. ( b J c ) ( g ( <. a , b >. ( comp ` C ) c ) f ) e. ( a J c ) ) ) ) ) |
| 110 |
43 108 109
|
mpbir2and |
|- ( ph -> J e. ( Subcat ` C ) ) |