| Step |
Hyp |
Ref |
Expression |
| 1 |
|
discsubc.j |
⊢ 𝐽 = ( 𝑥 ∈ 𝑆 , 𝑦 ∈ 𝑆 ↦ if ( 𝑥 = 𝑦 , { ( 𝐼 ‘ 𝑥 ) } , ∅ ) ) |
| 2 |
|
discsubc.b |
⊢ 𝐵 = ( Base ‘ 𝐶 ) |
| 3 |
|
discsubc.i |
⊢ 𝐼 = ( Id ‘ 𝐶 ) |
| 4 |
|
discsubc.s |
⊢ ( 𝜑 → 𝑆 ⊆ 𝐵 ) |
| 5 |
|
discsubc.c |
⊢ ( 𝜑 → 𝐶 ∈ Cat ) |
| 6 |
|
eqeq12 |
⊢ ( ( 𝑥 = 𝑎 ∧ 𝑦 = 𝑏 ) → ( 𝑥 = 𝑦 ↔ 𝑎 = 𝑏 ) ) |
| 7 |
|
simpl |
⊢ ( ( 𝑥 = 𝑎 ∧ 𝑦 = 𝑏 ) → 𝑥 = 𝑎 ) |
| 8 |
7
|
fveq2d |
⊢ ( ( 𝑥 = 𝑎 ∧ 𝑦 = 𝑏 ) → ( 𝐼 ‘ 𝑥 ) = ( 𝐼 ‘ 𝑎 ) ) |
| 9 |
8
|
sneqd |
⊢ ( ( 𝑥 = 𝑎 ∧ 𝑦 = 𝑏 ) → { ( 𝐼 ‘ 𝑥 ) } = { ( 𝐼 ‘ 𝑎 ) } ) |
| 10 |
6 9
|
ifbieq1d |
⊢ ( ( 𝑥 = 𝑎 ∧ 𝑦 = 𝑏 ) → if ( 𝑥 = 𝑦 , { ( 𝐼 ‘ 𝑥 ) } , ∅ ) = if ( 𝑎 = 𝑏 , { ( 𝐼 ‘ 𝑎 ) } , ∅ ) ) |
| 11 |
|
snex |
⊢ { ( 𝐼 ‘ 𝑎 ) } ∈ V |
| 12 |
|
0ex |
⊢ ∅ ∈ V |
| 13 |
11 12
|
ifex |
⊢ if ( 𝑎 = 𝑏 , { ( 𝐼 ‘ 𝑎 ) } , ∅ ) ∈ V |
| 14 |
10 1 13
|
ovmpoa |
⊢ ( ( 𝑎 ∈ 𝑆 ∧ 𝑏 ∈ 𝑆 ) → ( 𝑎 𝐽 𝑏 ) = if ( 𝑎 = 𝑏 , { ( 𝐼 ‘ 𝑎 ) } , ∅ ) ) |
| 15 |
14
|
adantl |
⊢ ( ( 𝜑 ∧ ( 𝑎 ∈ 𝑆 ∧ 𝑏 ∈ 𝑆 ) ) → ( 𝑎 𝐽 𝑏 ) = if ( 𝑎 = 𝑏 , { ( 𝐼 ‘ 𝑎 ) } , ∅ ) ) |
| 16 |
|
sseq1 |
⊢ ( { ( 𝐼 ‘ 𝑎 ) } = if ( 𝑎 = 𝑏 , { ( 𝐼 ‘ 𝑎 ) } , ∅ ) → ( { ( 𝐼 ‘ 𝑎 ) } ⊆ ( 𝑎 ( Homf ‘ 𝐶 ) 𝑏 ) ↔ if ( 𝑎 = 𝑏 , { ( 𝐼 ‘ 𝑎 ) } , ∅ ) ⊆ ( 𝑎 ( Homf ‘ 𝐶 ) 𝑏 ) ) ) |
| 17 |
|
sseq1 |
⊢ ( ∅ = if ( 𝑎 = 𝑏 , { ( 𝐼 ‘ 𝑎 ) } , ∅ ) → ( ∅ ⊆ ( 𝑎 ( Homf ‘ 𝐶 ) 𝑏 ) ↔ if ( 𝑎 = 𝑏 , { ( 𝐼 ‘ 𝑎 ) } , ∅ ) ⊆ ( 𝑎 ( Homf ‘ 𝐶 ) 𝑏 ) ) ) |
| 18 |
|
eqid |
⊢ ( Hom ‘ 𝐶 ) = ( Hom ‘ 𝐶 ) |
| 19 |
5
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ ( 𝑎 ∈ 𝑆 ∧ 𝑏 ∈ 𝑆 ) ) ∧ 𝑎 = 𝑏 ) → 𝐶 ∈ Cat ) |
| 20 |
4
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ ( 𝑎 ∈ 𝑆 ∧ 𝑏 ∈ 𝑆 ) ) ∧ 𝑎 = 𝑏 ) → 𝑆 ⊆ 𝐵 ) |
| 21 |
|
simplrl |
⊢ ( ( ( 𝜑 ∧ ( 𝑎 ∈ 𝑆 ∧ 𝑏 ∈ 𝑆 ) ) ∧ 𝑎 = 𝑏 ) → 𝑎 ∈ 𝑆 ) |
| 22 |
20 21
|
sseldd |
⊢ ( ( ( 𝜑 ∧ ( 𝑎 ∈ 𝑆 ∧ 𝑏 ∈ 𝑆 ) ) ∧ 𝑎 = 𝑏 ) → 𝑎 ∈ 𝐵 ) |
| 23 |
2 18 3 19 22
|
catidcl |
⊢ ( ( ( 𝜑 ∧ ( 𝑎 ∈ 𝑆 ∧ 𝑏 ∈ 𝑆 ) ) ∧ 𝑎 = 𝑏 ) → ( 𝐼 ‘ 𝑎 ) ∈ ( 𝑎 ( Hom ‘ 𝐶 ) 𝑎 ) ) |
| 24 |
|
eqid |
⊢ ( Homf ‘ 𝐶 ) = ( Homf ‘ 𝐶 ) |
| 25 |
24 2 18 22 22
|
homfval |
⊢ ( ( ( 𝜑 ∧ ( 𝑎 ∈ 𝑆 ∧ 𝑏 ∈ 𝑆 ) ) ∧ 𝑎 = 𝑏 ) → ( 𝑎 ( Homf ‘ 𝐶 ) 𝑎 ) = ( 𝑎 ( Hom ‘ 𝐶 ) 𝑎 ) ) |
| 26 |
|
simpr |
⊢ ( ( ( 𝜑 ∧ ( 𝑎 ∈ 𝑆 ∧ 𝑏 ∈ 𝑆 ) ) ∧ 𝑎 = 𝑏 ) → 𝑎 = 𝑏 ) |
| 27 |
26
|
oveq2d |
⊢ ( ( ( 𝜑 ∧ ( 𝑎 ∈ 𝑆 ∧ 𝑏 ∈ 𝑆 ) ) ∧ 𝑎 = 𝑏 ) → ( 𝑎 ( Homf ‘ 𝐶 ) 𝑎 ) = ( 𝑎 ( Homf ‘ 𝐶 ) 𝑏 ) ) |
| 28 |
25 27
|
eqtr3d |
⊢ ( ( ( 𝜑 ∧ ( 𝑎 ∈ 𝑆 ∧ 𝑏 ∈ 𝑆 ) ) ∧ 𝑎 = 𝑏 ) → ( 𝑎 ( Hom ‘ 𝐶 ) 𝑎 ) = ( 𝑎 ( Homf ‘ 𝐶 ) 𝑏 ) ) |
| 29 |
23 28
|
eleqtrd |
⊢ ( ( ( 𝜑 ∧ ( 𝑎 ∈ 𝑆 ∧ 𝑏 ∈ 𝑆 ) ) ∧ 𝑎 = 𝑏 ) → ( 𝐼 ‘ 𝑎 ) ∈ ( 𝑎 ( Homf ‘ 𝐶 ) 𝑏 ) ) |
| 30 |
29
|
snssd |
⊢ ( ( ( 𝜑 ∧ ( 𝑎 ∈ 𝑆 ∧ 𝑏 ∈ 𝑆 ) ) ∧ 𝑎 = 𝑏 ) → { ( 𝐼 ‘ 𝑎 ) } ⊆ ( 𝑎 ( Homf ‘ 𝐶 ) 𝑏 ) ) |
| 31 |
|
0ss |
⊢ ∅ ⊆ ( 𝑎 ( Homf ‘ 𝐶 ) 𝑏 ) |
| 32 |
31
|
a1i |
⊢ ( ( ( 𝜑 ∧ ( 𝑎 ∈ 𝑆 ∧ 𝑏 ∈ 𝑆 ) ) ∧ ¬ 𝑎 = 𝑏 ) → ∅ ⊆ ( 𝑎 ( Homf ‘ 𝐶 ) 𝑏 ) ) |
| 33 |
16 17 30 32
|
ifbothda |
⊢ ( ( 𝜑 ∧ ( 𝑎 ∈ 𝑆 ∧ 𝑏 ∈ 𝑆 ) ) → if ( 𝑎 = 𝑏 , { ( 𝐼 ‘ 𝑎 ) } , ∅ ) ⊆ ( 𝑎 ( Homf ‘ 𝐶 ) 𝑏 ) ) |
| 34 |
15 33
|
eqsstrd |
⊢ ( ( 𝜑 ∧ ( 𝑎 ∈ 𝑆 ∧ 𝑏 ∈ 𝑆 ) ) → ( 𝑎 𝐽 𝑏 ) ⊆ ( 𝑎 ( Homf ‘ 𝐶 ) 𝑏 ) ) |
| 35 |
34
|
ralrimivva |
⊢ ( 𝜑 → ∀ 𝑎 ∈ 𝑆 ∀ 𝑏 ∈ 𝑆 ( 𝑎 𝐽 𝑏 ) ⊆ ( 𝑎 ( Homf ‘ 𝐶 ) 𝑏 ) ) |
| 36 |
1
|
discsubclem |
⊢ 𝐽 Fn ( 𝑆 × 𝑆 ) |
| 37 |
36
|
a1i |
⊢ ( 𝜑 → 𝐽 Fn ( 𝑆 × 𝑆 ) ) |
| 38 |
24 2
|
homffn |
⊢ ( Homf ‘ 𝐶 ) Fn ( 𝐵 × 𝐵 ) |
| 39 |
38
|
a1i |
⊢ ( 𝜑 → ( Homf ‘ 𝐶 ) Fn ( 𝐵 × 𝐵 ) ) |
| 40 |
2
|
fvexi |
⊢ 𝐵 ∈ V |
| 41 |
40
|
a1i |
⊢ ( 𝜑 → 𝐵 ∈ V ) |
| 42 |
37 39 41
|
isssc |
⊢ ( 𝜑 → ( 𝐽 ⊆cat ( Homf ‘ 𝐶 ) ↔ ( 𝑆 ⊆ 𝐵 ∧ ∀ 𝑎 ∈ 𝑆 ∀ 𝑏 ∈ 𝑆 ( 𝑎 𝐽 𝑏 ) ⊆ ( 𝑎 ( Homf ‘ 𝐶 ) 𝑏 ) ) ) ) |
| 43 |
4 35 42
|
mpbir2and |
⊢ ( 𝜑 → 𝐽 ⊆cat ( Homf ‘ 𝐶 ) ) |
| 44 |
|
fvex |
⊢ ( 𝐼 ‘ 𝑎 ) ∈ V |
| 45 |
44
|
snid |
⊢ ( 𝐼 ‘ 𝑎 ) ∈ { ( 𝐼 ‘ 𝑎 ) } |
| 46 |
|
simpr |
⊢ ( ( 𝜑 ∧ 𝑎 ∈ 𝑆 ) → 𝑎 ∈ 𝑆 ) |
| 47 |
|
equtr2 |
⊢ ( ( 𝑥 = 𝑎 ∧ 𝑦 = 𝑎 ) → 𝑥 = 𝑦 ) |
| 48 |
47
|
iftrued |
⊢ ( ( 𝑥 = 𝑎 ∧ 𝑦 = 𝑎 ) → if ( 𝑥 = 𝑦 , { ( 𝐼 ‘ 𝑥 ) } , ∅ ) = { ( 𝐼 ‘ 𝑥 ) } ) |
| 49 |
|
simpl |
⊢ ( ( 𝑥 = 𝑎 ∧ 𝑦 = 𝑎 ) → 𝑥 = 𝑎 ) |
| 50 |
49
|
fveq2d |
⊢ ( ( 𝑥 = 𝑎 ∧ 𝑦 = 𝑎 ) → ( 𝐼 ‘ 𝑥 ) = ( 𝐼 ‘ 𝑎 ) ) |
| 51 |
50
|
sneqd |
⊢ ( ( 𝑥 = 𝑎 ∧ 𝑦 = 𝑎 ) → { ( 𝐼 ‘ 𝑥 ) } = { ( 𝐼 ‘ 𝑎 ) } ) |
| 52 |
48 51
|
eqtrd |
⊢ ( ( 𝑥 = 𝑎 ∧ 𝑦 = 𝑎 ) → if ( 𝑥 = 𝑦 , { ( 𝐼 ‘ 𝑥 ) } , ∅ ) = { ( 𝐼 ‘ 𝑎 ) } ) |
| 53 |
52 1 11
|
ovmpoa |
⊢ ( ( 𝑎 ∈ 𝑆 ∧ 𝑎 ∈ 𝑆 ) → ( 𝑎 𝐽 𝑎 ) = { ( 𝐼 ‘ 𝑎 ) } ) |
| 54 |
46 46 53
|
syl2anc |
⊢ ( ( 𝜑 ∧ 𝑎 ∈ 𝑆 ) → ( 𝑎 𝐽 𝑎 ) = { ( 𝐼 ‘ 𝑎 ) } ) |
| 55 |
45 54
|
eleqtrrid |
⊢ ( ( 𝜑 ∧ 𝑎 ∈ 𝑆 ) → ( 𝐼 ‘ 𝑎 ) ∈ ( 𝑎 𝐽 𝑎 ) ) |
| 56 |
45
|
a1i |
⊢ ( ( ( ( 𝜑 ∧ 𝑎 ∈ 𝑆 ) ∧ ( 𝑏 ∈ 𝑆 ∧ 𝑐 ∈ 𝑆 ) ) ∧ ( 𝑓 ∈ ( 𝑎 𝐽 𝑏 ) ∧ 𝑔 ∈ ( 𝑏 𝐽 𝑐 ) ) ) → ( 𝐼 ‘ 𝑎 ) ∈ { ( 𝐼 ‘ 𝑎 ) } ) |
| 57 |
|
simprl |
⊢ ( ( ( ( 𝜑 ∧ 𝑎 ∈ 𝑆 ) ∧ ( 𝑏 ∈ 𝑆 ∧ 𝑐 ∈ 𝑆 ) ) ∧ ( 𝑓 ∈ ( 𝑎 𝐽 𝑏 ) ∧ 𝑔 ∈ ( 𝑏 𝐽 𝑐 ) ) ) → 𝑓 ∈ ( 𝑎 𝐽 𝑏 ) ) |
| 58 |
46
|
ad2antrr |
⊢ ( ( ( ( 𝜑 ∧ 𝑎 ∈ 𝑆 ) ∧ ( 𝑏 ∈ 𝑆 ∧ 𝑐 ∈ 𝑆 ) ) ∧ ( 𝑓 ∈ ( 𝑎 𝐽 𝑏 ) ∧ 𝑔 ∈ ( 𝑏 𝐽 𝑐 ) ) ) → 𝑎 ∈ 𝑆 ) |
| 59 |
|
simplrl |
⊢ ( ( ( ( 𝜑 ∧ 𝑎 ∈ 𝑆 ) ∧ ( 𝑏 ∈ 𝑆 ∧ 𝑐 ∈ 𝑆 ) ) ∧ ( 𝑓 ∈ ( 𝑎 𝐽 𝑏 ) ∧ 𝑔 ∈ ( 𝑏 𝐽 𝑐 ) ) ) → 𝑏 ∈ 𝑆 ) |
| 60 |
58 59 14
|
syl2anc |
⊢ ( ( ( ( 𝜑 ∧ 𝑎 ∈ 𝑆 ) ∧ ( 𝑏 ∈ 𝑆 ∧ 𝑐 ∈ 𝑆 ) ) ∧ ( 𝑓 ∈ ( 𝑎 𝐽 𝑏 ) ∧ 𝑔 ∈ ( 𝑏 𝐽 𝑐 ) ) ) → ( 𝑎 𝐽 𝑏 ) = if ( 𝑎 = 𝑏 , { ( 𝐼 ‘ 𝑎 ) } , ∅ ) ) |
| 61 |
57 60
|
eleqtrd |
⊢ ( ( ( ( 𝜑 ∧ 𝑎 ∈ 𝑆 ) ∧ ( 𝑏 ∈ 𝑆 ∧ 𝑐 ∈ 𝑆 ) ) ∧ ( 𝑓 ∈ ( 𝑎 𝐽 𝑏 ) ∧ 𝑔 ∈ ( 𝑏 𝐽 𝑐 ) ) ) → 𝑓 ∈ if ( 𝑎 = 𝑏 , { ( 𝐼 ‘ 𝑎 ) } , ∅ ) ) |
| 62 |
61
|
ne0d |
⊢ ( ( ( ( 𝜑 ∧ 𝑎 ∈ 𝑆 ) ∧ ( 𝑏 ∈ 𝑆 ∧ 𝑐 ∈ 𝑆 ) ) ∧ ( 𝑓 ∈ ( 𝑎 𝐽 𝑏 ) ∧ 𝑔 ∈ ( 𝑏 𝐽 𝑐 ) ) ) → if ( 𝑎 = 𝑏 , { ( 𝐼 ‘ 𝑎 ) } , ∅ ) ≠ ∅ ) |
| 63 |
|
iffalse |
⊢ ( ¬ 𝑎 = 𝑏 → if ( 𝑎 = 𝑏 , { ( 𝐼 ‘ 𝑎 ) } , ∅ ) = ∅ ) |
| 64 |
63
|
necon1ai |
⊢ ( if ( 𝑎 = 𝑏 , { ( 𝐼 ‘ 𝑎 ) } , ∅ ) ≠ ∅ → 𝑎 = 𝑏 ) |
| 65 |
62 64
|
syl |
⊢ ( ( ( ( 𝜑 ∧ 𝑎 ∈ 𝑆 ) ∧ ( 𝑏 ∈ 𝑆 ∧ 𝑐 ∈ 𝑆 ) ) ∧ ( 𝑓 ∈ ( 𝑎 𝐽 𝑏 ) ∧ 𝑔 ∈ ( 𝑏 𝐽 𝑐 ) ) ) → 𝑎 = 𝑏 ) |
| 66 |
65
|
opeq2d |
⊢ ( ( ( ( 𝜑 ∧ 𝑎 ∈ 𝑆 ) ∧ ( 𝑏 ∈ 𝑆 ∧ 𝑐 ∈ 𝑆 ) ) ∧ ( 𝑓 ∈ ( 𝑎 𝐽 𝑏 ) ∧ 𝑔 ∈ ( 𝑏 𝐽 𝑐 ) ) ) → 〈 𝑎 , 𝑎 〉 = 〈 𝑎 , 𝑏 〉 ) |
| 67 |
|
simprr |
⊢ ( ( ( ( 𝜑 ∧ 𝑎 ∈ 𝑆 ) ∧ ( 𝑏 ∈ 𝑆 ∧ 𝑐 ∈ 𝑆 ) ) ∧ ( 𝑓 ∈ ( 𝑎 𝐽 𝑏 ) ∧ 𝑔 ∈ ( 𝑏 𝐽 𝑐 ) ) ) → 𝑔 ∈ ( 𝑏 𝐽 𝑐 ) ) |
| 68 |
|
eqeq12 |
⊢ ( ( 𝑥 = 𝑏 ∧ 𝑦 = 𝑐 ) → ( 𝑥 = 𝑦 ↔ 𝑏 = 𝑐 ) ) |
| 69 |
|
simpl |
⊢ ( ( 𝑥 = 𝑏 ∧ 𝑦 = 𝑐 ) → 𝑥 = 𝑏 ) |
| 70 |
69
|
fveq2d |
⊢ ( ( 𝑥 = 𝑏 ∧ 𝑦 = 𝑐 ) → ( 𝐼 ‘ 𝑥 ) = ( 𝐼 ‘ 𝑏 ) ) |
| 71 |
70
|
sneqd |
⊢ ( ( 𝑥 = 𝑏 ∧ 𝑦 = 𝑐 ) → { ( 𝐼 ‘ 𝑥 ) } = { ( 𝐼 ‘ 𝑏 ) } ) |
| 72 |
68 71
|
ifbieq1d |
⊢ ( ( 𝑥 = 𝑏 ∧ 𝑦 = 𝑐 ) → if ( 𝑥 = 𝑦 , { ( 𝐼 ‘ 𝑥 ) } , ∅ ) = if ( 𝑏 = 𝑐 , { ( 𝐼 ‘ 𝑏 ) } , ∅ ) ) |
| 73 |
|
snex |
⊢ { ( 𝐼 ‘ 𝑏 ) } ∈ V |
| 74 |
73 12
|
ifex |
⊢ if ( 𝑏 = 𝑐 , { ( 𝐼 ‘ 𝑏 ) } , ∅ ) ∈ V |
| 75 |
72 1 74
|
ovmpoa |
⊢ ( ( 𝑏 ∈ 𝑆 ∧ 𝑐 ∈ 𝑆 ) → ( 𝑏 𝐽 𝑐 ) = if ( 𝑏 = 𝑐 , { ( 𝐼 ‘ 𝑏 ) } , ∅ ) ) |
| 76 |
75
|
ad2antlr |
⊢ ( ( ( ( 𝜑 ∧ 𝑎 ∈ 𝑆 ) ∧ ( 𝑏 ∈ 𝑆 ∧ 𝑐 ∈ 𝑆 ) ) ∧ ( 𝑓 ∈ ( 𝑎 𝐽 𝑏 ) ∧ 𝑔 ∈ ( 𝑏 𝐽 𝑐 ) ) ) → ( 𝑏 𝐽 𝑐 ) = if ( 𝑏 = 𝑐 , { ( 𝐼 ‘ 𝑏 ) } , ∅ ) ) |
| 77 |
67 76
|
eleqtrd |
⊢ ( ( ( ( 𝜑 ∧ 𝑎 ∈ 𝑆 ) ∧ ( 𝑏 ∈ 𝑆 ∧ 𝑐 ∈ 𝑆 ) ) ∧ ( 𝑓 ∈ ( 𝑎 𝐽 𝑏 ) ∧ 𝑔 ∈ ( 𝑏 𝐽 𝑐 ) ) ) → 𝑔 ∈ if ( 𝑏 = 𝑐 , { ( 𝐼 ‘ 𝑏 ) } , ∅ ) ) |
| 78 |
77
|
ne0d |
⊢ ( ( ( ( 𝜑 ∧ 𝑎 ∈ 𝑆 ) ∧ ( 𝑏 ∈ 𝑆 ∧ 𝑐 ∈ 𝑆 ) ) ∧ ( 𝑓 ∈ ( 𝑎 𝐽 𝑏 ) ∧ 𝑔 ∈ ( 𝑏 𝐽 𝑐 ) ) ) → if ( 𝑏 = 𝑐 , { ( 𝐼 ‘ 𝑏 ) } , ∅ ) ≠ ∅ ) |
| 79 |
|
iffalse |
⊢ ( ¬ 𝑏 = 𝑐 → if ( 𝑏 = 𝑐 , { ( 𝐼 ‘ 𝑏 ) } , ∅ ) = ∅ ) |
| 80 |
79
|
necon1ai |
⊢ ( if ( 𝑏 = 𝑐 , { ( 𝐼 ‘ 𝑏 ) } , ∅ ) ≠ ∅ → 𝑏 = 𝑐 ) |
| 81 |
78 80
|
syl |
⊢ ( ( ( ( 𝜑 ∧ 𝑎 ∈ 𝑆 ) ∧ ( 𝑏 ∈ 𝑆 ∧ 𝑐 ∈ 𝑆 ) ) ∧ ( 𝑓 ∈ ( 𝑎 𝐽 𝑏 ) ∧ 𝑔 ∈ ( 𝑏 𝐽 𝑐 ) ) ) → 𝑏 = 𝑐 ) |
| 82 |
65 81
|
eqtrd |
⊢ ( ( ( ( 𝜑 ∧ 𝑎 ∈ 𝑆 ) ∧ ( 𝑏 ∈ 𝑆 ∧ 𝑐 ∈ 𝑆 ) ) ∧ ( 𝑓 ∈ ( 𝑎 𝐽 𝑏 ) ∧ 𝑔 ∈ ( 𝑏 𝐽 𝑐 ) ) ) → 𝑎 = 𝑐 ) |
| 83 |
66 82
|
oveq12d |
⊢ ( ( ( ( 𝜑 ∧ 𝑎 ∈ 𝑆 ) ∧ ( 𝑏 ∈ 𝑆 ∧ 𝑐 ∈ 𝑆 ) ) ∧ ( 𝑓 ∈ ( 𝑎 𝐽 𝑏 ) ∧ 𝑔 ∈ ( 𝑏 𝐽 𝑐 ) ) ) → ( 〈 𝑎 , 𝑎 〉 ( comp ‘ 𝐶 ) 𝑎 ) = ( 〈 𝑎 , 𝑏 〉 ( comp ‘ 𝐶 ) 𝑐 ) ) |
| 84 |
83
|
eqcomd |
⊢ ( ( ( ( 𝜑 ∧ 𝑎 ∈ 𝑆 ) ∧ ( 𝑏 ∈ 𝑆 ∧ 𝑐 ∈ 𝑆 ) ) ∧ ( 𝑓 ∈ ( 𝑎 𝐽 𝑏 ) ∧ 𝑔 ∈ ( 𝑏 𝐽 𝑐 ) ) ) → ( 〈 𝑎 , 𝑏 〉 ( comp ‘ 𝐶 ) 𝑐 ) = ( 〈 𝑎 , 𝑎 〉 ( comp ‘ 𝐶 ) 𝑎 ) ) |
| 85 |
81
|
iftrued |
⊢ ( ( ( ( 𝜑 ∧ 𝑎 ∈ 𝑆 ) ∧ ( 𝑏 ∈ 𝑆 ∧ 𝑐 ∈ 𝑆 ) ) ∧ ( 𝑓 ∈ ( 𝑎 𝐽 𝑏 ) ∧ 𝑔 ∈ ( 𝑏 𝐽 𝑐 ) ) ) → if ( 𝑏 = 𝑐 , { ( 𝐼 ‘ 𝑏 ) } , ∅ ) = { ( 𝐼 ‘ 𝑏 ) } ) |
| 86 |
77 85
|
eleqtrd |
⊢ ( ( ( ( 𝜑 ∧ 𝑎 ∈ 𝑆 ) ∧ ( 𝑏 ∈ 𝑆 ∧ 𝑐 ∈ 𝑆 ) ) ∧ ( 𝑓 ∈ ( 𝑎 𝐽 𝑏 ) ∧ 𝑔 ∈ ( 𝑏 𝐽 𝑐 ) ) ) → 𝑔 ∈ { ( 𝐼 ‘ 𝑏 ) } ) |
| 87 |
86
|
elsnd |
⊢ ( ( ( ( 𝜑 ∧ 𝑎 ∈ 𝑆 ) ∧ ( 𝑏 ∈ 𝑆 ∧ 𝑐 ∈ 𝑆 ) ) ∧ ( 𝑓 ∈ ( 𝑎 𝐽 𝑏 ) ∧ 𝑔 ∈ ( 𝑏 𝐽 𝑐 ) ) ) → 𝑔 = ( 𝐼 ‘ 𝑏 ) ) |
| 88 |
65
|
fveq2d |
⊢ ( ( ( ( 𝜑 ∧ 𝑎 ∈ 𝑆 ) ∧ ( 𝑏 ∈ 𝑆 ∧ 𝑐 ∈ 𝑆 ) ) ∧ ( 𝑓 ∈ ( 𝑎 𝐽 𝑏 ) ∧ 𝑔 ∈ ( 𝑏 𝐽 𝑐 ) ) ) → ( 𝐼 ‘ 𝑎 ) = ( 𝐼 ‘ 𝑏 ) ) |
| 89 |
87 88
|
eqtr4d |
⊢ ( ( ( ( 𝜑 ∧ 𝑎 ∈ 𝑆 ) ∧ ( 𝑏 ∈ 𝑆 ∧ 𝑐 ∈ 𝑆 ) ) ∧ ( 𝑓 ∈ ( 𝑎 𝐽 𝑏 ) ∧ 𝑔 ∈ ( 𝑏 𝐽 𝑐 ) ) ) → 𝑔 = ( 𝐼 ‘ 𝑎 ) ) |
| 90 |
65
|
iftrued |
⊢ ( ( ( ( 𝜑 ∧ 𝑎 ∈ 𝑆 ) ∧ ( 𝑏 ∈ 𝑆 ∧ 𝑐 ∈ 𝑆 ) ) ∧ ( 𝑓 ∈ ( 𝑎 𝐽 𝑏 ) ∧ 𝑔 ∈ ( 𝑏 𝐽 𝑐 ) ) ) → if ( 𝑎 = 𝑏 , { ( 𝐼 ‘ 𝑎 ) } , ∅ ) = { ( 𝐼 ‘ 𝑎 ) } ) |
| 91 |
61 90
|
eleqtrd |
⊢ ( ( ( ( 𝜑 ∧ 𝑎 ∈ 𝑆 ) ∧ ( 𝑏 ∈ 𝑆 ∧ 𝑐 ∈ 𝑆 ) ) ∧ ( 𝑓 ∈ ( 𝑎 𝐽 𝑏 ) ∧ 𝑔 ∈ ( 𝑏 𝐽 𝑐 ) ) ) → 𝑓 ∈ { ( 𝐼 ‘ 𝑎 ) } ) |
| 92 |
91
|
elsnd |
⊢ ( ( ( ( 𝜑 ∧ 𝑎 ∈ 𝑆 ) ∧ ( 𝑏 ∈ 𝑆 ∧ 𝑐 ∈ 𝑆 ) ) ∧ ( 𝑓 ∈ ( 𝑎 𝐽 𝑏 ) ∧ 𝑔 ∈ ( 𝑏 𝐽 𝑐 ) ) ) → 𝑓 = ( 𝐼 ‘ 𝑎 ) ) |
| 93 |
84 89 92
|
oveq123d |
⊢ ( ( ( ( 𝜑 ∧ 𝑎 ∈ 𝑆 ) ∧ ( 𝑏 ∈ 𝑆 ∧ 𝑐 ∈ 𝑆 ) ) ∧ ( 𝑓 ∈ ( 𝑎 𝐽 𝑏 ) ∧ 𝑔 ∈ ( 𝑏 𝐽 𝑐 ) ) ) → ( 𝑔 ( 〈 𝑎 , 𝑏 〉 ( comp ‘ 𝐶 ) 𝑐 ) 𝑓 ) = ( ( 𝐼 ‘ 𝑎 ) ( 〈 𝑎 , 𝑎 〉 ( comp ‘ 𝐶 ) 𝑎 ) ( 𝐼 ‘ 𝑎 ) ) ) |
| 94 |
5
|
ad3antrrr |
⊢ ( ( ( ( 𝜑 ∧ 𝑎 ∈ 𝑆 ) ∧ ( 𝑏 ∈ 𝑆 ∧ 𝑐 ∈ 𝑆 ) ) ∧ ( 𝑓 ∈ ( 𝑎 𝐽 𝑏 ) ∧ 𝑔 ∈ ( 𝑏 𝐽 𝑐 ) ) ) → 𝐶 ∈ Cat ) |
| 95 |
4
|
ad3antrrr |
⊢ ( ( ( ( 𝜑 ∧ 𝑎 ∈ 𝑆 ) ∧ ( 𝑏 ∈ 𝑆 ∧ 𝑐 ∈ 𝑆 ) ) ∧ ( 𝑓 ∈ ( 𝑎 𝐽 𝑏 ) ∧ 𝑔 ∈ ( 𝑏 𝐽 𝑐 ) ) ) → 𝑆 ⊆ 𝐵 ) |
| 96 |
95 58
|
sseldd |
⊢ ( ( ( ( 𝜑 ∧ 𝑎 ∈ 𝑆 ) ∧ ( 𝑏 ∈ 𝑆 ∧ 𝑐 ∈ 𝑆 ) ) ∧ ( 𝑓 ∈ ( 𝑎 𝐽 𝑏 ) ∧ 𝑔 ∈ ( 𝑏 𝐽 𝑐 ) ) ) → 𝑎 ∈ 𝐵 ) |
| 97 |
|
eqid |
⊢ ( comp ‘ 𝐶 ) = ( comp ‘ 𝐶 ) |
| 98 |
2 18 3 94 96
|
catidcl |
⊢ ( ( ( ( 𝜑 ∧ 𝑎 ∈ 𝑆 ) ∧ ( 𝑏 ∈ 𝑆 ∧ 𝑐 ∈ 𝑆 ) ) ∧ ( 𝑓 ∈ ( 𝑎 𝐽 𝑏 ) ∧ 𝑔 ∈ ( 𝑏 𝐽 𝑐 ) ) ) → ( 𝐼 ‘ 𝑎 ) ∈ ( 𝑎 ( Hom ‘ 𝐶 ) 𝑎 ) ) |
| 99 |
2 18 3 94 96 97 96 98
|
catlid |
⊢ ( ( ( ( 𝜑 ∧ 𝑎 ∈ 𝑆 ) ∧ ( 𝑏 ∈ 𝑆 ∧ 𝑐 ∈ 𝑆 ) ) ∧ ( 𝑓 ∈ ( 𝑎 𝐽 𝑏 ) ∧ 𝑔 ∈ ( 𝑏 𝐽 𝑐 ) ) ) → ( ( 𝐼 ‘ 𝑎 ) ( 〈 𝑎 , 𝑎 〉 ( comp ‘ 𝐶 ) 𝑎 ) ( 𝐼 ‘ 𝑎 ) ) = ( 𝐼 ‘ 𝑎 ) ) |
| 100 |
93 99
|
eqtrd |
⊢ ( ( ( ( 𝜑 ∧ 𝑎 ∈ 𝑆 ) ∧ ( 𝑏 ∈ 𝑆 ∧ 𝑐 ∈ 𝑆 ) ) ∧ ( 𝑓 ∈ ( 𝑎 𝐽 𝑏 ) ∧ 𝑔 ∈ ( 𝑏 𝐽 𝑐 ) ) ) → ( 𝑔 ( 〈 𝑎 , 𝑏 〉 ( comp ‘ 𝐶 ) 𝑐 ) 𝑓 ) = ( 𝐼 ‘ 𝑎 ) ) |
| 101 |
82
|
oveq2d |
⊢ ( ( ( ( 𝜑 ∧ 𝑎 ∈ 𝑆 ) ∧ ( 𝑏 ∈ 𝑆 ∧ 𝑐 ∈ 𝑆 ) ) ∧ ( 𝑓 ∈ ( 𝑎 𝐽 𝑏 ) ∧ 𝑔 ∈ ( 𝑏 𝐽 𝑐 ) ) ) → ( 𝑎 𝐽 𝑎 ) = ( 𝑎 𝐽 𝑐 ) ) |
| 102 |
58 58 53
|
syl2anc |
⊢ ( ( ( ( 𝜑 ∧ 𝑎 ∈ 𝑆 ) ∧ ( 𝑏 ∈ 𝑆 ∧ 𝑐 ∈ 𝑆 ) ) ∧ ( 𝑓 ∈ ( 𝑎 𝐽 𝑏 ) ∧ 𝑔 ∈ ( 𝑏 𝐽 𝑐 ) ) ) → ( 𝑎 𝐽 𝑎 ) = { ( 𝐼 ‘ 𝑎 ) } ) |
| 103 |
101 102
|
eqtr3d |
⊢ ( ( ( ( 𝜑 ∧ 𝑎 ∈ 𝑆 ) ∧ ( 𝑏 ∈ 𝑆 ∧ 𝑐 ∈ 𝑆 ) ) ∧ ( 𝑓 ∈ ( 𝑎 𝐽 𝑏 ) ∧ 𝑔 ∈ ( 𝑏 𝐽 𝑐 ) ) ) → ( 𝑎 𝐽 𝑐 ) = { ( 𝐼 ‘ 𝑎 ) } ) |
| 104 |
56 100 103
|
3eltr4d |
⊢ ( ( ( ( 𝜑 ∧ 𝑎 ∈ 𝑆 ) ∧ ( 𝑏 ∈ 𝑆 ∧ 𝑐 ∈ 𝑆 ) ) ∧ ( 𝑓 ∈ ( 𝑎 𝐽 𝑏 ) ∧ 𝑔 ∈ ( 𝑏 𝐽 𝑐 ) ) ) → ( 𝑔 ( 〈 𝑎 , 𝑏 〉 ( comp ‘ 𝐶 ) 𝑐 ) 𝑓 ) ∈ ( 𝑎 𝐽 𝑐 ) ) |
| 105 |
104
|
ralrimivva |
⊢ ( ( ( 𝜑 ∧ 𝑎 ∈ 𝑆 ) ∧ ( 𝑏 ∈ 𝑆 ∧ 𝑐 ∈ 𝑆 ) ) → ∀ 𝑓 ∈ ( 𝑎 𝐽 𝑏 ) ∀ 𝑔 ∈ ( 𝑏 𝐽 𝑐 ) ( 𝑔 ( 〈 𝑎 , 𝑏 〉 ( comp ‘ 𝐶 ) 𝑐 ) 𝑓 ) ∈ ( 𝑎 𝐽 𝑐 ) ) |
| 106 |
105
|
ralrimivva |
⊢ ( ( 𝜑 ∧ 𝑎 ∈ 𝑆 ) → ∀ 𝑏 ∈ 𝑆 ∀ 𝑐 ∈ 𝑆 ∀ 𝑓 ∈ ( 𝑎 𝐽 𝑏 ) ∀ 𝑔 ∈ ( 𝑏 𝐽 𝑐 ) ( 𝑔 ( 〈 𝑎 , 𝑏 〉 ( comp ‘ 𝐶 ) 𝑐 ) 𝑓 ) ∈ ( 𝑎 𝐽 𝑐 ) ) |
| 107 |
55 106
|
jca |
⊢ ( ( 𝜑 ∧ 𝑎 ∈ 𝑆 ) → ( ( 𝐼 ‘ 𝑎 ) ∈ ( 𝑎 𝐽 𝑎 ) ∧ ∀ 𝑏 ∈ 𝑆 ∀ 𝑐 ∈ 𝑆 ∀ 𝑓 ∈ ( 𝑎 𝐽 𝑏 ) ∀ 𝑔 ∈ ( 𝑏 𝐽 𝑐 ) ( 𝑔 ( 〈 𝑎 , 𝑏 〉 ( comp ‘ 𝐶 ) 𝑐 ) 𝑓 ) ∈ ( 𝑎 𝐽 𝑐 ) ) ) |
| 108 |
107
|
ralrimiva |
⊢ ( 𝜑 → ∀ 𝑎 ∈ 𝑆 ( ( 𝐼 ‘ 𝑎 ) ∈ ( 𝑎 𝐽 𝑎 ) ∧ ∀ 𝑏 ∈ 𝑆 ∀ 𝑐 ∈ 𝑆 ∀ 𝑓 ∈ ( 𝑎 𝐽 𝑏 ) ∀ 𝑔 ∈ ( 𝑏 𝐽 𝑐 ) ( 𝑔 ( 〈 𝑎 , 𝑏 〉 ( comp ‘ 𝐶 ) 𝑐 ) 𝑓 ) ∈ ( 𝑎 𝐽 𝑐 ) ) ) |
| 109 |
24 3 97 5 37
|
issubc2 |
⊢ ( 𝜑 → ( 𝐽 ∈ ( Subcat ‘ 𝐶 ) ↔ ( 𝐽 ⊆cat ( Homf ‘ 𝐶 ) ∧ ∀ 𝑎 ∈ 𝑆 ( ( 𝐼 ‘ 𝑎 ) ∈ ( 𝑎 𝐽 𝑎 ) ∧ ∀ 𝑏 ∈ 𝑆 ∀ 𝑐 ∈ 𝑆 ∀ 𝑓 ∈ ( 𝑎 𝐽 𝑏 ) ∀ 𝑔 ∈ ( 𝑏 𝐽 𝑐 ) ( 𝑔 ( 〈 𝑎 , 𝑏 〉 ( comp ‘ 𝐶 ) 𝑐 ) 𝑓 ) ∈ ( 𝑎 𝐽 𝑐 ) ) ) ) ) |
| 110 |
43 108 109
|
mpbir2and |
⊢ ( 𝜑 → 𝐽 ∈ ( Subcat ‘ 𝐶 ) ) |