Metamath Proof Explorer


Theorem iinfconstbaslem

Description: Lemma for iinfconstbas . (Contributed by Zhi Wang, 1-Nov-2025)

Ref Expression
Hypotheses discsubc.j 𝐽 = ( 𝑥𝑆 , 𝑦𝑆 ↦ if ( 𝑥 = 𝑦 , { ( 𝐼𝑥 ) } , ∅ ) )
discsubc.b 𝐵 = ( Base ‘ 𝐶 )
discsubc.i 𝐼 = ( Id ‘ 𝐶 )
discsubc.s ( 𝜑𝑆𝐵 )
discsubc.c ( 𝜑𝐶 ∈ Cat )
iinfconstbas.a ( 𝜑𝐴 = ( ( Subcat ‘ 𝐶 ) ∩ { 𝑗𝑗 Fn ( 𝑆 × 𝑆 ) } ) )
Assertion iinfconstbaslem ( 𝜑𝐽𝐴 )

Proof

Step Hyp Ref Expression
1 discsubc.j 𝐽 = ( 𝑥𝑆 , 𝑦𝑆 ↦ if ( 𝑥 = 𝑦 , { ( 𝐼𝑥 ) } , ∅ ) )
2 discsubc.b 𝐵 = ( Base ‘ 𝐶 )
3 discsubc.i 𝐼 = ( Id ‘ 𝐶 )
4 discsubc.s ( 𝜑𝑆𝐵 )
5 discsubc.c ( 𝜑𝐶 ∈ Cat )
6 iinfconstbas.a ( 𝜑𝐴 = ( ( Subcat ‘ 𝐶 ) ∩ { 𝑗𝑗 Fn ( 𝑆 × 𝑆 ) } ) )
7 1 2 3 4 5 discsubc ( 𝜑𝐽 ∈ ( Subcat ‘ 𝐶 ) )
8 1 discsubclem 𝐽 Fn ( 𝑆 × 𝑆 )
9 8 a1i ( 𝜑𝐽 Fn ( 𝑆 × 𝑆 ) )
10 fneq1 ( 𝑗 = 𝐽 → ( 𝑗 Fn ( 𝑆 × 𝑆 ) ↔ 𝐽 Fn ( 𝑆 × 𝑆 ) ) )
11 7 9 10 elabd ( 𝜑𝐽 ∈ { 𝑗𝑗 Fn ( 𝑆 × 𝑆 ) } )
12 7 11 elind ( 𝜑𝐽 ∈ ( ( Subcat ‘ 𝐶 ) ∩ { 𝑗𝑗 Fn ( 𝑆 × 𝑆 ) } ) )
13 12 6 eleqtrrd ( 𝜑𝐽𝐴 )