| Step |
Hyp |
Ref |
Expression |
| 1 |
|
discsubc.j |
⊢ 𝐽 = ( 𝑥 ∈ 𝑆 , 𝑦 ∈ 𝑆 ↦ if ( 𝑥 = 𝑦 , { ( 𝐼 ‘ 𝑥 ) } , ∅ ) ) |
| 2 |
|
discsubc.b |
⊢ 𝐵 = ( Base ‘ 𝐶 ) |
| 3 |
|
discsubc.i |
⊢ 𝐼 = ( Id ‘ 𝐶 ) |
| 4 |
|
discsubc.s |
⊢ ( 𝜑 → 𝑆 ⊆ 𝐵 ) |
| 5 |
|
discsubc.c |
⊢ ( 𝜑 → 𝐶 ∈ Cat ) |
| 6 |
|
iinfconstbas.a |
⊢ ( 𝜑 → 𝐴 = ( ( Subcat ‘ 𝐶 ) ∩ { 𝑗 ∣ 𝑗 Fn ( 𝑆 × 𝑆 ) } ) ) |
| 7 |
1 2 3 4 5
|
discsubc |
⊢ ( 𝜑 → 𝐽 ∈ ( Subcat ‘ 𝐶 ) ) |
| 8 |
1
|
discsubclem |
⊢ 𝐽 Fn ( 𝑆 × 𝑆 ) |
| 9 |
8
|
a1i |
⊢ ( 𝜑 → 𝐽 Fn ( 𝑆 × 𝑆 ) ) |
| 10 |
|
fneq1 |
⊢ ( 𝑗 = 𝐽 → ( 𝑗 Fn ( 𝑆 × 𝑆 ) ↔ 𝐽 Fn ( 𝑆 × 𝑆 ) ) ) |
| 11 |
7 9 10
|
elabd |
⊢ ( 𝜑 → 𝐽 ∈ { 𝑗 ∣ 𝑗 Fn ( 𝑆 × 𝑆 ) } ) |
| 12 |
7 11
|
elind |
⊢ ( 𝜑 → 𝐽 ∈ ( ( Subcat ‘ 𝐶 ) ∩ { 𝑗 ∣ 𝑗 Fn ( 𝑆 × 𝑆 ) } ) ) |
| 13 |
12 6
|
eleqtrrd |
⊢ ( 𝜑 → 𝐽 ∈ 𝐴 ) |