Metamath Proof Explorer


Theorem iinfconstbaslem

Description: Lemma for iinfconstbas . (Contributed by Zhi Wang, 1-Nov-2025)

Ref Expression
Hypotheses discsubc.j
|- J = ( x e. S , y e. S |-> if ( x = y , { ( I ` x ) } , (/) ) )
discsubc.b
|- B = ( Base ` C )
discsubc.i
|- I = ( Id ` C )
discsubc.s
|- ( ph -> S C_ B )
discsubc.c
|- ( ph -> C e. Cat )
iinfconstbas.a
|- ( ph -> A = ( ( Subcat ` C ) i^i { j | j Fn ( S X. S ) } ) )
Assertion iinfconstbaslem
|- ( ph -> J e. A )

Proof

Step Hyp Ref Expression
1 discsubc.j
 |-  J = ( x e. S , y e. S |-> if ( x = y , { ( I ` x ) } , (/) ) )
2 discsubc.b
 |-  B = ( Base ` C )
3 discsubc.i
 |-  I = ( Id ` C )
4 discsubc.s
 |-  ( ph -> S C_ B )
5 discsubc.c
 |-  ( ph -> C e. Cat )
6 iinfconstbas.a
 |-  ( ph -> A = ( ( Subcat ` C ) i^i { j | j Fn ( S X. S ) } ) )
7 1 2 3 4 5 discsubc
 |-  ( ph -> J e. ( Subcat ` C ) )
8 1 discsubclem
 |-  J Fn ( S X. S )
9 8 a1i
 |-  ( ph -> J Fn ( S X. S ) )
10 fneq1
 |-  ( j = J -> ( j Fn ( S X. S ) <-> J Fn ( S X. S ) ) )
11 7 9 10 elabd
 |-  ( ph -> J e. { j | j Fn ( S X. S ) } )
12 7 11 elind
 |-  ( ph -> J e. ( ( Subcat ` C ) i^i { j | j Fn ( S X. S ) } ) )
13 12 6 eleqtrrd
 |-  ( ph -> J e. A )