| Step |
Hyp |
Ref |
Expression |
| 1 |
|
discsubc.j |
|- J = ( x e. S , y e. S |-> if ( x = y , { ( I ` x ) } , (/) ) ) |
| 2 |
|
discsubc.b |
|- B = ( Base ` C ) |
| 3 |
|
discsubc.i |
|- I = ( Id ` C ) |
| 4 |
|
discsubc.s |
|- ( ph -> S C_ B ) |
| 5 |
|
discsubc.c |
|- ( ph -> C e. Cat ) |
| 6 |
|
iinfconstbas.a |
|- ( ph -> A = ( ( Subcat ` C ) i^i { j | j Fn ( S X. S ) } ) ) |
| 7 |
1 2 3 4 5
|
discsubc |
|- ( ph -> J e. ( Subcat ` C ) ) |
| 8 |
1
|
discsubclem |
|- J Fn ( S X. S ) |
| 9 |
8
|
a1i |
|- ( ph -> J Fn ( S X. S ) ) |
| 10 |
|
fneq1 |
|- ( j = J -> ( j Fn ( S X. S ) <-> J Fn ( S X. S ) ) ) |
| 11 |
7 9 10
|
elabd |
|- ( ph -> J e. { j | j Fn ( S X. S ) } ) |
| 12 |
7 11
|
elind |
|- ( ph -> J e. ( ( Subcat ` C ) i^i { j | j Fn ( S X. S ) } ) ) |
| 13 |
12 6
|
eleqtrrd |
|- ( ph -> J e. A ) |