Metamath Proof Explorer


Theorem iinfconstbaslem

Description: Lemma for iinfconstbas . (Contributed by Zhi Wang, 1-Nov-2025)

Ref Expression
Hypotheses discsubc.j J = x S , y S if x = y I x
discsubc.b B = Base C
discsubc.i I = Id C
discsubc.s φ S B
discsubc.c φ C Cat
iinfconstbas.a φ A = Subcat C j | j Fn S × S
Assertion iinfconstbaslem φ J A

Proof

Step Hyp Ref Expression
1 discsubc.j J = x S , y S if x = y I x
2 discsubc.b B = Base C
3 discsubc.i I = Id C
4 discsubc.s φ S B
5 discsubc.c φ C Cat
6 iinfconstbas.a φ A = Subcat C j | j Fn S × S
7 1 2 3 4 5 discsubc φ J Subcat C
8 1 discsubclem J Fn S × S
9 8 a1i φ J Fn S × S
10 fneq1 j = J j Fn S × S J Fn S × S
11 7 9 10 elabd φ J j | j Fn S × S
12 7 11 elind φ J Subcat C j | j Fn S × S
13 12 6 eleqtrrd φ J A