| Step |
Hyp |
Ref |
Expression |
| 1 |
|
discsubc.j |
|
| 2 |
|
discsubc.b |
|
| 3 |
|
discsubc.i |
|
| 4 |
|
discsubc.s |
|
| 5 |
|
discsubc.c |
|
| 6 |
|
iinfconstbas.a |
|
| 7 |
1 2 3 4 5 6
|
iinfconstbaslem |
|
| 8 |
7
|
ne0d |
|
| 9 |
|
iinconst |
|
| 10 |
8 9
|
syl |
|
| 11 |
10
|
eqcomd |
|
| 12 |
11
|
adantr |
|
| 13 |
7
|
adantr |
|
| 14 |
|
simpr |
|
| 15 |
14
|
oveqd |
|
| 16 |
|
snex |
|
| 17 |
|
0ex |
|
| 18 |
16 17
|
ifex |
|
| 19 |
1
|
ovmpt4g |
|
| 20 |
18 19
|
mp3an3 |
|
| 21 |
20
|
ad2antlr |
|
| 22 |
15 21
|
eqtrd |
|
| 23 |
|
sseq1 |
|
| 24 |
|
sseq1 |
|
| 25 |
|
simpr |
|
| 26 |
6
|
adantr |
|
| 27 |
25 26
|
eleqtrd |
|
| 28 |
27
|
elin1d |
|
| 29 |
28
|
adantlr |
|
| 30 |
27
|
elin2d |
|
| 31 |
|
vex |
|
| 32 |
|
fneq1 |
|
| 33 |
31 32
|
elab |
|
| 34 |
30 33
|
sylib |
|
| 35 |
34
|
adantlr |
|
| 36 |
|
simplrl |
|
| 37 |
29 35 36 3
|
subcidcl |
|
| 38 |
37
|
adantr |
|
| 39 |
|
simpr |
|
| 40 |
39
|
oveq2d |
|
| 41 |
38 40
|
eleqtrd |
|
| 42 |
41
|
snssd |
|
| 43 |
|
0ss |
|
| 44 |
43
|
a1i |
|
| 45 |
23 24 42 44
|
ifbothda |
|
| 46 |
13 22 45
|
iinglb |
|
| 47 |
46
|
eqcomd |
|
| 48 |
11 12 47
|
mpoeq123dva |
|
| 49 |
1 48
|
eqtrid |
|
| 50 |
|
eqid |
|
| 51 |
28 50
|
subcssc |
|
| 52 |
|
eqidd |
|
| 53 |
|
dmdm |
|
| 54 |
34 53
|
syl |
|
| 55 |
|
nfv |
|
| 56 |
8 51 52 54 55
|
iinfssclem1 |
|
| 57 |
49 56
|
eqtr4d |
|