| Step |
Hyp |
Ref |
Expression |
| 1 |
|
discsubc.j |
⊢ 𝐽 = ( 𝑥 ∈ 𝑆 , 𝑦 ∈ 𝑆 ↦ if ( 𝑥 = 𝑦 , { ( 𝐼 ‘ 𝑥 ) } , ∅ ) ) |
| 2 |
|
discsubc.b |
⊢ 𝐵 = ( Base ‘ 𝐶 ) |
| 3 |
|
discsubc.i |
⊢ 𝐼 = ( Id ‘ 𝐶 ) |
| 4 |
|
discsubc.s |
⊢ ( 𝜑 → 𝑆 ⊆ 𝐵 ) |
| 5 |
|
discsubc.c |
⊢ ( 𝜑 → 𝐶 ∈ Cat ) |
| 6 |
|
iinfconstbas.a |
⊢ ( 𝜑 → 𝐴 = ( ( Subcat ‘ 𝐶 ) ∩ { 𝑗 ∣ 𝑗 Fn ( 𝑆 × 𝑆 ) } ) ) |
| 7 |
1 2 3 4 5 6
|
iinfconstbaslem |
⊢ ( 𝜑 → 𝐽 ∈ 𝐴 ) |
| 8 |
7
|
ne0d |
⊢ ( 𝜑 → 𝐴 ≠ ∅ ) |
| 9 |
|
iinconst |
⊢ ( 𝐴 ≠ ∅ → ∩ ℎ ∈ 𝐴 𝑆 = 𝑆 ) |
| 10 |
8 9
|
syl |
⊢ ( 𝜑 → ∩ ℎ ∈ 𝐴 𝑆 = 𝑆 ) |
| 11 |
10
|
eqcomd |
⊢ ( 𝜑 → 𝑆 = ∩ ℎ ∈ 𝐴 𝑆 ) |
| 12 |
11
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑆 ) → 𝑆 = ∩ ℎ ∈ 𝐴 𝑆 ) |
| 13 |
7
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆 ) ) → 𝐽 ∈ 𝐴 ) |
| 14 |
|
simpr |
⊢ ( ( ( 𝜑 ∧ ( 𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆 ) ) ∧ ℎ = 𝐽 ) → ℎ = 𝐽 ) |
| 15 |
14
|
oveqd |
⊢ ( ( ( 𝜑 ∧ ( 𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆 ) ) ∧ ℎ = 𝐽 ) → ( 𝑥 ℎ 𝑦 ) = ( 𝑥 𝐽 𝑦 ) ) |
| 16 |
|
snex |
⊢ { ( 𝐼 ‘ 𝑥 ) } ∈ V |
| 17 |
|
0ex |
⊢ ∅ ∈ V |
| 18 |
16 17
|
ifex |
⊢ if ( 𝑥 = 𝑦 , { ( 𝐼 ‘ 𝑥 ) } , ∅ ) ∈ V |
| 19 |
1
|
ovmpt4g |
⊢ ( ( 𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆 ∧ if ( 𝑥 = 𝑦 , { ( 𝐼 ‘ 𝑥 ) } , ∅ ) ∈ V ) → ( 𝑥 𝐽 𝑦 ) = if ( 𝑥 = 𝑦 , { ( 𝐼 ‘ 𝑥 ) } , ∅ ) ) |
| 20 |
18 19
|
mp3an3 |
⊢ ( ( 𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆 ) → ( 𝑥 𝐽 𝑦 ) = if ( 𝑥 = 𝑦 , { ( 𝐼 ‘ 𝑥 ) } , ∅ ) ) |
| 21 |
20
|
ad2antlr |
⊢ ( ( ( 𝜑 ∧ ( 𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆 ) ) ∧ ℎ = 𝐽 ) → ( 𝑥 𝐽 𝑦 ) = if ( 𝑥 = 𝑦 , { ( 𝐼 ‘ 𝑥 ) } , ∅ ) ) |
| 22 |
15 21
|
eqtrd |
⊢ ( ( ( 𝜑 ∧ ( 𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆 ) ) ∧ ℎ = 𝐽 ) → ( 𝑥 ℎ 𝑦 ) = if ( 𝑥 = 𝑦 , { ( 𝐼 ‘ 𝑥 ) } , ∅ ) ) |
| 23 |
|
sseq1 |
⊢ ( { ( 𝐼 ‘ 𝑥 ) } = if ( 𝑥 = 𝑦 , { ( 𝐼 ‘ 𝑥 ) } , ∅ ) → ( { ( 𝐼 ‘ 𝑥 ) } ⊆ ( 𝑥 ℎ 𝑦 ) ↔ if ( 𝑥 = 𝑦 , { ( 𝐼 ‘ 𝑥 ) } , ∅ ) ⊆ ( 𝑥 ℎ 𝑦 ) ) ) |
| 24 |
|
sseq1 |
⊢ ( ∅ = if ( 𝑥 = 𝑦 , { ( 𝐼 ‘ 𝑥 ) } , ∅ ) → ( ∅ ⊆ ( 𝑥 ℎ 𝑦 ) ↔ if ( 𝑥 = 𝑦 , { ( 𝐼 ‘ 𝑥 ) } , ∅ ) ⊆ ( 𝑥 ℎ 𝑦 ) ) ) |
| 25 |
|
simpr |
⊢ ( ( 𝜑 ∧ ℎ ∈ 𝐴 ) → ℎ ∈ 𝐴 ) |
| 26 |
6
|
adantr |
⊢ ( ( 𝜑 ∧ ℎ ∈ 𝐴 ) → 𝐴 = ( ( Subcat ‘ 𝐶 ) ∩ { 𝑗 ∣ 𝑗 Fn ( 𝑆 × 𝑆 ) } ) ) |
| 27 |
25 26
|
eleqtrd |
⊢ ( ( 𝜑 ∧ ℎ ∈ 𝐴 ) → ℎ ∈ ( ( Subcat ‘ 𝐶 ) ∩ { 𝑗 ∣ 𝑗 Fn ( 𝑆 × 𝑆 ) } ) ) |
| 28 |
27
|
elin1d |
⊢ ( ( 𝜑 ∧ ℎ ∈ 𝐴 ) → ℎ ∈ ( Subcat ‘ 𝐶 ) ) |
| 29 |
28
|
adantlr |
⊢ ( ( ( 𝜑 ∧ ( 𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆 ) ) ∧ ℎ ∈ 𝐴 ) → ℎ ∈ ( Subcat ‘ 𝐶 ) ) |
| 30 |
27
|
elin2d |
⊢ ( ( 𝜑 ∧ ℎ ∈ 𝐴 ) → ℎ ∈ { 𝑗 ∣ 𝑗 Fn ( 𝑆 × 𝑆 ) } ) |
| 31 |
|
vex |
⊢ ℎ ∈ V |
| 32 |
|
fneq1 |
⊢ ( 𝑗 = ℎ → ( 𝑗 Fn ( 𝑆 × 𝑆 ) ↔ ℎ Fn ( 𝑆 × 𝑆 ) ) ) |
| 33 |
31 32
|
elab |
⊢ ( ℎ ∈ { 𝑗 ∣ 𝑗 Fn ( 𝑆 × 𝑆 ) } ↔ ℎ Fn ( 𝑆 × 𝑆 ) ) |
| 34 |
30 33
|
sylib |
⊢ ( ( 𝜑 ∧ ℎ ∈ 𝐴 ) → ℎ Fn ( 𝑆 × 𝑆 ) ) |
| 35 |
34
|
adantlr |
⊢ ( ( ( 𝜑 ∧ ( 𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆 ) ) ∧ ℎ ∈ 𝐴 ) → ℎ Fn ( 𝑆 × 𝑆 ) ) |
| 36 |
|
simplrl |
⊢ ( ( ( 𝜑 ∧ ( 𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆 ) ) ∧ ℎ ∈ 𝐴 ) → 𝑥 ∈ 𝑆 ) |
| 37 |
29 35 36 3
|
subcidcl |
⊢ ( ( ( 𝜑 ∧ ( 𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆 ) ) ∧ ℎ ∈ 𝐴 ) → ( 𝐼 ‘ 𝑥 ) ∈ ( 𝑥 ℎ 𝑥 ) ) |
| 38 |
37
|
adantr |
⊢ ( ( ( ( 𝜑 ∧ ( 𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆 ) ) ∧ ℎ ∈ 𝐴 ) ∧ 𝑥 = 𝑦 ) → ( 𝐼 ‘ 𝑥 ) ∈ ( 𝑥 ℎ 𝑥 ) ) |
| 39 |
|
simpr |
⊢ ( ( ( ( 𝜑 ∧ ( 𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆 ) ) ∧ ℎ ∈ 𝐴 ) ∧ 𝑥 = 𝑦 ) → 𝑥 = 𝑦 ) |
| 40 |
39
|
oveq2d |
⊢ ( ( ( ( 𝜑 ∧ ( 𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆 ) ) ∧ ℎ ∈ 𝐴 ) ∧ 𝑥 = 𝑦 ) → ( 𝑥 ℎ 𝑥 ) = ( 𝑥 ℎ 𝑦 ) ) |
| 41 |
38 40
|
eleqtrd |
⊢ ( ( ( ( 𝜑 ∧ ( 𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆 ) ) ∧ ℎ ∈ 𝐴 ) ∧ 𝑥 = 𝑦 ) → ( 𝐼 ‘ 𝑥 ) ∈ ( 𝑥 ℎ 𝑦 ) ) |
| 42 |
41
|
snssd |
⊢ ( ( ( ( 𝜑 ∧ ( 𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆 ) ) ∧ ℎ ∈ 𝐴 ) ∧ 𝑥 = 𝑦 ) → { ( 𝐼 ‘ 𝑥 ) } ⊆ ( 𝑥 ℎ 𝑦 ) ) |
| 43 |
|
0ss |
⊢ ∅ ⊆ ( 𝑥 ℎ 𝑦 ) |
| 44 |
43
|
a1i |
⊢ ( ( ( ( 𝜑 ∧ ( 𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆 ) ) ∧ ℎ ∈ 𝐴 ) ∧ ¬ 𝑥 = 𝑦 ) → ∅ ⊆ ( 𝑥 ℎ 𝑦 ) ) |
| 45 |
23 24 42 44
|
ifbothda |
⊢ ( ( ( 𝜑 ∧ ( 𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆 ) ) ∧ ℎ ∈ 𝐴 ) → if ( 𝑥 = 𝑦 , { ( 𝐼 ‘ 𝑥 ) } , ∅ ) ⊆ ( 𝑥 ℎ 𝑦 ) ) |
| 46 |
13 22 45
|
iinglb |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆 ) ) → ∩ ℎ ∈ 𝐴 ( 𝑥 ℎ 𝑦 ) = if ( 𝑥 = 𝑦 , { ( 𝐼 ‘ 𝑥 ) } , ∅ ) ) |
| 47 |
46
|
eqcomd |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆 ) ) → if ( 𝑥 = 𝑦 , { ( 𝐼 ‘ 𝑥 ) } , ∅ ) = ∩ ℎ ∈ 𝐴 ( 𝑥 ℎ 𝑦 ) ) |
| 48 |
11 12 47
|
mpoeq123dva |
⊢ ( 𝜑 → ( 𝑥 ∈ 𝑆 , 𝑦 ∈ 𝑆 ↦ if ( 𝑥 = 𝑦 , { ( 𝐼 ‘ 𝑥 ) } , ∅ ) ) = ( 𝑥 ∈ ∩ ℎ ∈ 𝐴 𝑆 , 𝑦 ∈ ∩ ℎ ∈ 𝐴 𝑆 ↦ ∩ ℎ ∈ 𝐴 ( 𝑥 ℎ 𝑦 ) ) ) |
| 49 |
1 48
|
eqtrid |
⊢ ( 𝜑 → 𝐽 = ( 𝑥 ∈ ∩ ℎ ∈ 𝐴 𝑆 , 𝑦 ∈ ∩ ℎ ∈ 𝐴 𝑆 ↦ ∩ ℎ ∈ 𝐴 ( 𝑥 ℎ 𝑦 ) ) ) |
| 50 |
|
eqid |
⊢ ( Homf ‘ 𝐶 ) = ( Homf ‘ 𝐶 ) |
| 51 |
28 50
|
subcssc |
⊢ ( ( 𝜑 ∧ ℎ ∈ 𝐴 ) → ℎ ⊆cat ( Homf ‘ 𝐶 ) ) |
| 52 |
|
eqidd |
⊢ ( 𝜑 → ( 𝑧 ∈ ∩ ℎ ∈ 𝐴 dom ℎ ↦ ∩ ℎ ∈ 𝐴 ( ℎ ‘ 𝑧 ) ) = ( 𝑧 ∈ ∩ ℎ ∈ 𝐴 dom ℎ ↦ ∩ ℎ ∈ 𝐴 ( ℎ ‘ 𝑧 ) ) ) |
| 53 |
|
dmdm |
⊢ ( ℎ Fn ( 𝑆 × 𝑆 ) → 𝑆 = dom dom ℎ ) |
| 54 |
34 53
|
syl |
⊢ ( ( 𝜑 ∧ ℎ ∈ 𝐴 ) → 𝑆 = dom dom ℎ ) |
| 55 |
|
nfv |
⊢ Ⅎ ℎ 𝜑 |
| 56 |
8 51 52 54 55
|
iinfssclem1 |
⊢ ( 𝜑 → ( 𝑧 ∈ ∩ ℎ ∈ 𝐴 dom ℎ ↦ ∩ ℎ ∈ 𝐴 ( ℎ ‘ 𝑧 ) ) = ( 𝑥 ∈ ∩ ℎ ∈ 𝐴 𝑆 , 𝑦 ∈ ∩ ℎ ∈ 𝐴 𝑆 ↦ ∩ ℎ ∈ 𝐴 ( 𝑥 ℎ 𝑦 ) ) ) |
| 57 |
49 56
|
eqtr4d |
⊢ ( 𝜑 → 𝐽 = ( 𝑧 ∈ ∩ ℎ ∈ 𝐴 dom ℎ ↦ ∩ ℎ ∈ 𝐴 ( ℎ ‘ 𝑧 ) ) ) |