| Step |
Hyp |
Ref |
Expression |
| 1 |
|
discsubc.j |
|- J = ( x e. S , y e. S |-> if ( x = y , { ( I ` x ) } , (/) ) ) |
| 2 |
|
discsubc.b |
|- B = ( Base ` C ) |
| 3 |
|
discsubc.i |
|- I = ( Id ` C ) |
| 4 |
|
discsubc.s |
|- ( ph -> S C_ B ) |
| 5 |
|
discsubc.c |
|- ( ph -> C e. Cat ) |
| 6 |
|
iinfconstbas.a |
|- ( ph -> A = ( ( Subcat ` C ) i^i { j | j Fn ( S X. S ) } ) ) |
| 7 |
1 2 3 4 5 6
|
iinfconstbaslem |
|- ( ph -> J e. A ) |
| 8 |
7
|
ne0d |
|- ( ph -> A =/= (/) ) |
| 9 |
|
iinconst |
|- ( A =/= (/) -> |^|_ h e. A S = S ) |
| 10 |
8 9
|
syl |
|- ( ph -> |^|_ h e. A S = S ) |
| 11 |
10
|
eqcomd |
|- ( ph -> S = |^|_ h e. A S ) |
| 12 |
11
|
adantr |
|- ( ( ph /\ x e. S ) -> S = |^|_ h e. A S ) |
| 13 |
7
|
adantr |
|- ( ( ph /\ ( x e. S /\ y e. S ) ) -> J e. A ) |
| 14 |
|
simpr |
|- ( ( ( ph /\ ( x e. S /\ y e. S ) ) /\ h = J ) -> h = J ) |
| 15 |
14
|
oveqd |
|- ( ( ( ph /\ ( x e. S /\ y e. S ) ) /\ h = J ) -> ( x h y ) = ( x J y ) ) |
| 16 |
|
snex |
|- { ( I ` x ) } e. _V |
| 17 |
|
0ex |
|- (/) e. _V |
| 18 |
16 17
|
ifex |
|- if ( x = y , { ( I ` x ) } , (/) ) e. _V |
| 19 |
1
|
ovmpt4g |
|- ( ( x e. S /\ y e. S /\ if ( x = y , { ( I ` x ) } , (/) ) e. _V ) -> ( x J y ) = if ( x = y , { ( I ` x ) } , (/) ) ) |
| 20 |
18 19
|
mp3an3 |
|- ( ( x e. S /\ y e. S ) -> ( x J y ) = if ( x = y , { ( I ` x ) } , (/) ) ) |
| 21 |
20
|
ad2antlr |
|- ( ( ( ph /\ ( x e. S /\ y e. S ) ) /\ h = J ) -> ( x J y ) = if ( x = y , { ( I ` x ) } , (/) ) ) |
| 22 |
15 21
|
eqtrd |
|- ( ( ( ph /\ ( x e. S /\ y e. S ) ) /\ h = J ) -> ( x h y ) = if ( x = y , { ( I ` x ) } , (/) ) ) |
| 23 |
|
sseq1 |
|- ( { ( I ` x ) } = if ( x = y , { ( I ` x ) } , (/) ) -> ( { ( I ` x ) } C_ ( x h y ) <-> if ( x = y , { ( I ` x ) } , (/) ) C_ ( x h y ) ) ) |
| 24 |
|
sseq1 |
|- ( (/) = if ( x = y , { ( I ` x ) } , (/) ) -> ( (/) C_ ( x h y ) <-> if ( x = y , { ( I ` x ) } , (/) ) C_ ( x h y ) ) ) |
| 25 |
|
simpr |
|- ( ( ph /\ h e. A ) -> h e. A ) |
| 26 |
6
|
adantr |
|- ( ( ph /\ h e. A ) -> A = ( ( Subcat ` C ) i^i { j | j Fn ( S X. S ) } ) ) |
| 27 |
25 26
|
eleqtrd |
|- ( ( ph /\ h e. A ) -> h e. ( ( Subcat ` C ) i^i { j | j Fn ( S X. S ) } ) ) |
| 28 |
27
|
elin1d |
|- ( ( ph /\ h e. A ) -> h e. ( Subcat ` C ) ) |
| 29 |
28
|
adantlr |
|- ( ( ( ph /\ ( x e. S /\ y e. S ) ) /\ h e. A ) -> h e. ( Subcat ` C ) ) |
| 30 |
27
|
elin2d |
|- ( ( ph /\ h e. A ) -> h e. { j | j Fn ( S X. S ) } ) |
| 31 |
|
vex |
|- h e. _V |
| 32 |
|
fneq1 |
|- ( j = h -> ( j Fn ( S X. S ) <-> h Fn ( S X. S ) ) ) |
| 33 |
31 32
|
elab |
|- ( h e. { j | j Fn ( S X. S ) } <-> h Fn ( S X. S ) ) |
| 34 |
30 33
|
sylib |
|- ( ( ph /\ h e. A ) -> h Fn ( S X. S ) ) |
| 35 |
34
|
adantlr |
|- ( ( ( ph /\ ( x e. S /\ y e. S ) ) /\ h e. A ) -> h Fn ( S X. S ) ) |
| 36 |
|
simplrl |
|- ( ( ( ph /\ ( x e. S /\ y e. S ) ) /\ h e. A ) -> x e. S ) |
| 37 |
29 35 36 3
|
subcidcl |
|- ( ( ( ph /\ ( x e. S /\ y e. S ) ) /\ h e. A ) -> ( I ` x ) e. ( x h x ) ) |
| 38 |
37
|
adantr |
|- ( ( ( ( ph /\ ( x e. S /\ y e. S ) ) /\ h e. A ) /\ x = y ) -> ( I ` x ) e. ( x h x ) ) |
| 39 |
|
simpr |
|- ( ( ( ( ph /\ ( x e. S /\ y e. S ) ) /\ h e. A ) /\ x = y ) -> x = y ) |
| 40 |
39
|
oveq2d |
|- ( ( ( ( ph /\ ( x e. S /\ y e. S ) ) /\ h e. A ) /\ x = y ) -> ( x h x ) = ( x h y ) ) |
| 41 |
38 40
|
eleqtrd |
|- ( ( ( ( ph /\ ( x e. S /\ y e. S ) ) /\ h e. A ) /\ x = y ) -> ( I ` x ) e. ( x h y ) ) |
| 42 |
41
|
snssd |
|- ( ( ( ( ph /\ ( x e. S /\ y e. S ) ) /\ h e. A ) /\ x = y ) -> { ( I ` x ) } C_ ( x h y ) ) |
| 43 |
|
0ss |
|- (/) C_ ( x h y ) |
| 44 |
43
|
a1i |
|- ( ( ( ( ph /\ ( x e. S /\ y e. S ) ) /\ h e. A ) /\ -. x = y ) -> (/) C_ ( x h y ) ) |
| 45 |
23 24 42 44
|
ifbothda |
|- ( ( ( ph /\ ( x e. S /\ y e. S ) ) /\ h e. A ) -> if ( x = y , { ( I ` x ) } , (/) ) C_ ( x h y ) ) |
| 46 |
13 22 45
|
iinglb |
|- ( ( ph /\ ( x e. S /\ y e. S ) ) -> |^|_ h e. A ( x h y ) = if ( x = y , { ( I ` x ) } , (/) ) ) |
| 47 |
46
|
eqcomd |
|- ( ( ph /\ ( x e. S /\ y e. S ) ) -> if ( x = y , { ( I ` x ) } , (/) ) = |^|_ h e. A ( x h y ) ) |
| 48 |
11 12 47
|
mpoeq123dva |
|- ( ph -> ( x e. S , y e. S |-> if ( x = y , { ( I ` x ) } , (/) ) ) = ( x e. |^|_ h e. A S , y e. |^|_ h e. A S |-> |^|_ h e. A ( x h y ) ) ) |
| 49 |
1 48
|
eqtrid |
|- ( ph -> J = ( x e. |^|_ h e. A S , y e. |^|_ h e. A S |-> |^|_ h e. A ( x h y ) ) ) |
| 50 |
|
eqid |
|- ( Homf ` C ) = ( Homf ` C ) |
| 51 |
28 50
|
subcssc |
|- ( ( ph /\ h e. A ) -> h C_cat ( Homf ` C ) ) |
| 52 |
|
eqidd |
|- ( ph -> ( z e. |^|_ h e. A dom h |-> |^|_ h e. A ( h ` z ) ) = ( z e. |^|_ h e. A dom h |-> |^|_ h e. A ( h ` z ) ) ) |
| 53 |
|
dmdm |
|- ( h Fn ( S X. S ) -> S = dom dom h ) |
| 54 |
34 53
|
syl |
|- ( ( ph /\ h e. A ) -> S = dom dom h ) |
| 55 |
|
nfv |
|- F/ h ph |
| 56 |
8 51 52 54 55
|
iinfssclem1 |
|- ( ph -> ( z e. |^|_ h e. A dom h |-> |^|_ h e. A ( h ` z ) ) = ( x e. |^|_ h e. A S , y e. |^|_ h e. A S |-> |^|_ h e. A ( x h y ) ) ) |
| 57 |
49 56
|
eqtr4d |
|- ( ph -> J = ( z e. |^|_ h e. A dom h |-> |^|_ h e. A ( h ` z ) ) ) |