Metamath Proof Explorer


Theorem discsubc

Description: A discrete category, whose only morphisms are the identity morphisms, is a subcategory. (Contributed by Zhi Wang, 1-Nov-2025)

Ref Expression
Hypotheses discsubc.j J = x S , y S if x = y I x
discsubc.b B = Base C
discsubc.i I = Id C
discsubc.s φ S B
discsubc.c φ C Cat
Assertion discsubc φ J Subcat C

Proof

Step Hyp Ref Expression
1 discsubc.j J = x S , y S if x = y I x
2 discsubc.b B = Base C
3 discsubc.i I = Id C
4 discsubc.s φ S B
5 discsubc.c φ C Cat
6 eqeq12 x = a y = b x = y a = b
7 simpl x = a y = b x = a
8 7 fveq2d x = a y = b I x = I a
9 8 sneqd x = a y = b I x = I a
10 6 9 ifbieq1d x = a y = b if x = y I x = if a = b I a
11 snex I a V
12 0ex V
13 11 12 ifex if a = b I a V
14 10 1 13 ovmpoa a S b S a J b = if a = b I a
15 14 adantl φ a S b S a J b = if a = b I a
16 sseq1 I a = if a = b I a I a a Hom 𝑓 C b if a = b I a a Hom 𝑓 C b
17 sseq1 = if a = b I a a Hom 𝑓 C b if a = b I a a Hom 𝑓 C b
18 eqid Hom C = Hom C
19 5 ad2antrr φ a S b S a = b C Cat
20 4 ad2antrr φ a S b S a = b S B
21 simplrl φ a S b S a = b a S
22 20 21 sseldd φ a S b S a = b a B
23 2 18 3 19 22 catidcl φ a S b S a = b I a a Hom C a
24 eqid Hom 𝑓 C = Hom 𝑓 C
25 24 2 18 22 22 homfval φ a S b S a = b a Hom 𝑓 C a = a Hom C a
26 simpr φ a S b S a = b a = b
27 26 oveq2d φ a S b S a = b a Hom 𝑓 C a = a Hom 𝑓 C b
28 25 27 eqtr3d φ a S b S a = b a Hom C a = a Hom 𝑓 C b
29 23 28 eleqtrd φ a S b S a = b I a a Hom 𝑓 C b
30 29 snssd φ a S b S a = b I a a Hom 𝑓 C b
31 0ss a Hom 𝑓 C b
32 31 a1i φ a S b S ¬ a = b a Hom 𝑓 C b
33 16 17 30 32 ifbothda φ a S b S if a = b I a a Hom 𝑓 C b
34 15 33 eqsstrd φ a S b S a J b a Hom 𝑓 C b
35 34 ralrimivva φ a S b S a J b a Hom 𝑓 C b
36 1 discsubclem J Fn S × S
37 36 a1i φ J Fn S × S
38 24 2 homffn Hom 𝑓 C Fn B × B
39 38 a1i φ Hom 𝑓 C Fn B × B
40 2 fvexi B V
41 40 a1i φ B V
42 37 39 41 isssc φ J cat Hom 𝑓 C S B a S b S a J b a Hom 𝑓 C b
43 4 35 42 mpbir2and φ J cat Hom 𝑓 C
44 fvex I a V
45 44 snid I a I a
46 simpr φ a S a S
47 equtr2 x = a y = a x = y
48 47 iftrued x = a y = a if x = y I x = I x
49 simpl x = a y = a x = a
50 49 fveq2d x = a y = a I x = I a
51 50 sneqd x = a y = a I x = I a
52 48 51 eqtrd x = a y = a if x = y I x = I a
53 52 1 11 ovmpoa a S a S a J a = I a
54 46 46 53 syl2anc φ a S a J a = I a
55 45 54 eleqtrrid φ a S I a a J a
56 45 a1i φ a S b S c S f a J b g b J c I a I a
57 simprl φ a S b S c S f a J b g b J c f a J b
58 46 ad2antrr φ a S b S c S f a J b g b J c a S
59 simplrl φ a S b S c S f a J b g b J c b S
60 58 59 14 syl2anc φ a S b S c S f a J b g b J c a J b = if a = b I a
61 57 60 eleqtrd φ a S b S c S f a J b g b J c f if a = b I a
62 61 ne0d φ a S b S c S f a J b g b J c if a = b I a
63 iffalse ¬ a = b if a = b I a =
64 63 necon1ai if a = b I a a = b
65 62 64 syl φ a S b S c S f a J b g b J c a = b
66 65 opeq2d φ a S b S c S f a J b g b J c a a = a b
67 simprr φ a S b S c S f a J b g b J c g b J c
68 eqeq12 x = b y = c x = y b = c
69 simpl x = b y = c x = b
70 69 fveq2d x = b y = c I x = I b
71 70 sneqd x = b y = c I x = I b
72 68 71 ifbieq1d x = b y = c if x = y I x = if b = c I b
73 snex I b V
74 73 12 ifex if b = c I b V
75 72 1 74 ovmpoa b S c S b J c = if b = c I b
76 75 ad2antlr φ a S b S c S f a J b g b J c b J c = if b = c I b
77 67 76 eleqtrd φ a S b S c S f a J b g b J c g if b = c I b
78 77 ne0d φ a S b S c S f a J b g b J c if b = c I b
79 iffalse ¬ b = c if b = c I b =
80 79 necon1ai if b = c I b b = c
81 78 80 syl φ a S b S c S f a J b g b J c b = c
82 65 81 eqtrd φ a S b S c S f a J b g b J c a = c
83 66 82 oveq12d φ a S b S c S f a J b g b J c a a comp C a = a b comp C c
84 83 eqcomd φ a S b S c S f a J b g b J c a b comp C c = a a comp C a
85 81 iftrued φ a S b S c S f a J b g b J c if b = c I b = I b
86 77 85 eleqtrd φ a S b S c S f a J b g b J c g I b
87 86 elsnd φ a S b S c S f a J b g b J c g = I b
88 65 fveq2d φ a S b S c S f a J b g b J c I a = I b
89 87 88 eqtr4d φ a S b S c S f a J b g b J c g = I a
90 65 iftrued φ a S b S c S f a J b g b J c if a = b I a = I a
91 61 90 eleqtrd φ a S b S c S f a J b g b J c f I a
92 91 elsnd φ a S b S c S f a J b g b J c f = I a
93 84 89 92 oveq123d φ a S b S c S f a J b g b J c g a b comp C c f = I a a a comp C a I a
94 5 ad3antrrr φ a S b S c S f a J b g b J c C Cat
95 4 ad3antrrr φ a S b S c S f a J b g b J c S B
96 95 58 sseldd φ a S b S c S f a J b g b J c a B
97 eqid comp C = comp C
98 2 18 3 94 96 catidcl φ a S b S c S f a J b g b J c I a a Hom C a
99 2 18 3 94 96 97 96 98 catlid φ a S b S c S f a J b g b J c I a a a comp C a I a = I a
100 93 99 eqtrd φ a S b S c S f a J b g b J c g a b comp C c f = I a
101 82 oveq2d φ a S b S c S f a J b g b J c a J a = a J c
102 58 58 53 syl2anc φ a S b S c S f a J b g b J c a J a = I a
103 101 102 eqtr3d φ a S b S c S f a J b g b J c a J c = I a
104 56 100 103 3eltr4d φ a S b S c S f a J b g b J c g a b comp C c f a J c
105 104 ralrimivva φ a S b S c S f a J b g b J c g a b comp C c f a J c
106 105 ralrimivva φ a S b S c S f a J b g b J c g a b comp C c f a J c
107 55 106 jca φ a S I a a J a b S c S f a J b g b J c g a b comp C c f a J c
108 107 ralrimiva φ a S I a a J a b S c S f a J b g b J c g a b comp C c f a J c
109 24 3 97 5 37 issubc2 φ J Subcat C J cat Hom 𝑓 C a S I a a J a b S c S f a J b g b J c g a b comp C c f a J c
110 43 108 109 mpbir2and φ J Subcat C