| Step |
Hyp |
Ref |
Expression |
| 1 |
|
discsubc.j |
|
| 2 |
|
discsubc.b |
|
| 3 |
|
discsubc.i |
|
| 4 |
|
discsubc.s |
|
| 5 |
|
discsubc.c |
|
| 6 |
|
eqeq12 |
|
| 7 |
|
simpl |
|
| 8 |
7
|
fveq2d |
|
| 9 |
8
|
sneqd |
|
| 10 |
6 9
|
ifbieq1d |
|
| 11 |
|
snex |
|
| 12 |
|
0ex |
|
| 13 |
11 12
|
ifex |
|
| 14 |
10 1 13
|
ovmpoa |
|
| 15 |
14
|
adantl |
|
| 16 |
|
sseq1 |
|
| 17 |
|
sseq1 |
|
| 18 |
|
eqid |
|
| 19 |
5
|
ad2antrr |
|
| 20 |
4
|
ad2antrr |
|
| 21 |
|
simplrl |
|
| 22 |
20 21
|
sseldd |
|
| 23 |
2 18 3 19 22
|
catidcl |
|
| 24 |
|
eqid |
|
| 25 |
24 2 18 22 22
|
homfval |
|
| 26 |
|
simpr |
|
| 27 |
26
|
oveq2d |
|
| 28 |
25 27
|
eqtr3d |
|
| 29 |
23 28
|
eleqtrd |
|
| 30 |
29
|
snssd |
|
| 31 |
|
0ss |
|
| 32 |
31
|
a1i |
|
| 33 |
16 17 30 32
|
ifbothda |
|
| 34 |
15 33
|
eqsstrd |
|
| 35 |
34
|
ralrimivva |
|
| 36 |
1
|
discsubclem |
|
| 37 |
36
|
a1i |
|
| 38 |
24 2
|
homffn |
|
| 39 |
38
|
a1i |
|
| 40 |
2
|
fvexi |
|
| 41 |
40
|
a1i |
|
| 42 |
37 39 41
|
isssc |
|
| 43 |
4 35 42
|
mpbir2and |
|
| 44 |
|
fvex |
|
| 45 |
44
|
snid |
|
| 46 |
|
simpr |
|
| 47 |
|
equtr2 |
|
| 48 |
47
|
iftrued |
|
| 49 |
|
simpl |
|
| 50 |
49
|
fveq2d |
|
| 51 |
50
|
sneqd |
|
| 52 |
48 51
|
eqtrd |
|
| 53 |
52 1 11
|
ovmpoa |
|
| 54 |
46 46 53
|
syl2anc |
|
| 55 |
45 54
|
eleqtrrid |
|
| 56 |
45
|
a1i |
|
| 57 |
|
simprl |
|
| 58 |
46
|
ad2antrr |
|
| 59 |
|
simplrl |
|
| 60 |
58 59 14
|
syl2anc |
|
| 61 |
57 60
|
eleqtrd |
|
| 62 |
61
|
ne0d |
|
| 63 |
|
iffalse |
|
| 64 |
63
|
necon1ai |
|
| 65 |
62 64
|
syl |
|
| 66 |
65
|
opeq2d |
|
| 67 |
|
simprr |
|
| 68 |
|
eqeq12 |
|
| 69 |
|
simpl |
|
| 70 |
69
|
fveq2d |
|
| 71 |
70
|
sneqd |
|
| 72 |
68 71
|
ifbieq1d |
|
| 73 |
|
snex |
|
| 74 |
73 12
|
ifex |
|
| 75 |
72 1 74
|
ovmpoa |
|
| 76 |
75
|
ad2antlr |
|
| 77 |
67 76
|
eleqtrd |
|
| 78 |
77
|
ne0d |
|
| 79 |
|
iffalse |
|
| 80 |
79
|
necon1ai |
|
| 81 |
78 80
|
syl |
|
| 82 |
65 81
|
eqtrd |
|
| 83 |
66 82
|
oveq12d |
|
| 84 |
83
|
eqcomd |
|
| 85 |
81
|
iftrued |
|
| 86 |
77 85
|
eleqtrd |
|
| 87 |
86
|
elsnd |
|
| 88 |
65
|
fveq2d |
|
| 89 |
87 88
|
eqtr4d |
|
| 90 |
65
|
iftrued |
|
| 91 |
61 90
|
eleqtrd |
|
| 92 |
91
|
elsnd |
|
| 93 |
84 89 92
|
oveq123d |
|
| 94 |
5
|
ad3antrrr |
|
| 95 |
4
|
ad3antrrr |
|
| 96 |
95 58
|
sseldd |
|
| 97 |
|
eqid |
|
| 98 |
2 18 3 94 96
|
catidcl |
|
| 99 |
2 18 3 94 96 97 96 98
|
catlid |
|
| 100 |
93 99
|
eqtrd |
|
| 101 |
82
|
oveq2d |
|
| 102 |
58 58 53
|
syl2anc |
|
| 103 |
101 102
|
eqtr3d |
|
| 104 |
56 100 103
|
3eltr4d |
|
| 105 |
104
|
ralrimivva |
|
| 106 |
105
|
ralrimivva |
|
| 107 |
55 106
|
jca |
|
| 108 |
107
|
ralrimiva |
|
| 109 |
24 3 97 5 37
|
issubc2 |
|
| 110 |
43 108 109
|
mpbir2and |
|