| Step |
Hyp |
Ref |
Expression |
| 1 |
|
infsubc2d.1 |
|- ( ph -> H Fn ( S X. S ) ) |
| 2 |
|
infsubc2d.2 |
|- ( ph -> J Fn ( T X. T ) ) |
| 3 |
|
infsubc2d.3 |
|- ( ph -> H e. ( Subcat ` C ) ) |
| 4 |
|
infsubc2d.4 |
|- ( ph -> J e. ( Subcat ` C ) ) |
| 5 |
1
|
fndmd |
|- ( ph -> dom H = ( S X. S ) ) |
| 6 |
5
|
dmeqd |
|- ( ph -> dom dom H = dom ( S X. S ) ) |
| 7 |
|
dmxpid |
|- dom ( S X. S ) = S |
| 8 |
6 7
|
eqtrdi |
|- ( ph -> dom dom H = S ) |
| 9 |
2
|
fndmd |
|- ( ph -> dom J = ( T X. T ) ) |
| 10 |
9
|
dmeqd |
|- ( ph -> dom dom J = dom ( T X. T ) ) |
| 11 |
|
dmxpid |
|- dom ( T X. T ) = T |
| 12 |
10 11
|
eqtrdi |
|- ( ph -> dom dom J = T ) |
| 13 |
8 12
|
ineq12d |
|- ( ph -> ( dom dom H i^i dom dom J ) = ( S i^i T ) ) |
| 14 |
|
mpoeq12 |
|- ( ( ( dom dom H i^i dom dom J ) = ( S i^i T ) /\ ( dom dom H i^i dom dom J ) = ( S i^i T ) ) -> ( x e. ( dom dom H i^i dom dom J ) , y e. ( dom dom H i^i dom dom J ) |-> ( ( x H y ) i^i ( x J y ) ) ) = ( x e. ( S i^i T ) , y e. ( S i^i T ) |-> ( ( x H y ) i^i ( x J y ) ) ) ) |
| 15 |
13 13 14
|
syl2anc |
|- ( ph -> ( x e. ( dom dom H i^i dom dom J ) , y e. ( dom dom H i^i dom dom J ) |-> ( ( x H y ) i^i ( x J y ) ) ) = ( x e. ( S i^i T ) , y e. ( S i^i T ) |-> ( ( x H y ) i^i ( x J y ) ) ) ) |
| 16 |
|
infsubc2 |
|- ( ( H e. ( Subcat ` C ) /\ J e. ( Subcat ` C ) ) -> ( x e. ( dom dom H i^i dom dom J ) , y e. ( dom dom H i^i dom dom J ) |-> ( ( x H y ) i^i ( x J y ) ) ) e. ( Subcat ` C ) ) |
| 17 |
3 4 16
|
syl2anc |
|- ( ph -> ( x e. ( dom dom H i^i dom dom J ) , y e. ( dom dom H i^i dom dom J ) |-> ( ( x H y ) i^i ( x J y ) ) ) e. ( Subcat ` C ) ) |
| 18 |
15 17
|
eqeltrrd |
|- ( ph -> ( x e. ( S i^i T ) , y e. ( S i^i T ) |-> ( ( x H y ) i^i ( x J y ) ) ) e. ( Subcat ` C ) ) |