Metamath Proof Explorer


Theorem infsubc2d

Description: The intersection of two subcategories is a subcategory. (Contributed by Zhi Wang, 31-Oct-2025)

Ref Expression
Hypotheses infsubc2d.1
|- ( ph -> H Fn ( S X. S ) )
infsubc2d.2
|- ( ph -> J Fn ( T X. T ) )
infsubc2d.3
|- ( ph -> H e. ( Subcat ` C ) )
infsubc2d.4
|- ( ph -> J e. ( Subcat ` C ) )
Assertion infsubc2d
|- ( ph -> ( x e. ( S i^i T ) , y e. ( S i^i T ) |-> ( ( x H y ) i^i ( x J y ) ) ) e. ( Subcat ` C ) )

Proof

Step Hyp Ref Expression
1 infsubc2d.1
 |-  ( ph -> H Fn ( S X. S ) )
2 infsubc2d.2
 |-  ( ph -> J Fn ( T X. T ) )
3 infsubc2d.3
 |-  ( ph -> H e. ( Subcat ` C ) )
4 infsubc2d.4
 |-  ( ph -> J e. ( Subcat ` C ) )
5 1 fndmd
 |-  ( ph -> dom H = ( S X. S ) )
6 5 dmeqd
 |-  ( ph -> dom dom H = dom ( S X. S ) )
7 dmxpid
 |-  dom ( S X. S ) = S
8 6 7 eqtrdi
 |-  ( ph -> dom dom H = S )
9 2 fndmd
 |-  ( ph -> dom J = ( T X. T ) )
10 9 dmeqd
 |-  ( ph -> dom dom J = dom ( T X. T ) )
11 dmxpid
 |-  dom ( T X. T ) = T
12 10 11 eqtrdi
 |-  ( ph -> dom dom J = T )
13 8 12 ineq12d
 |-  ( ph -> ( dom dom H i^i dom dom J ) = ( S i^i T ) )
14 mpoeq12
 |-  ( ( ( dom dom H i^i dom dom J ) = ( S i^i T ) /\ ( dom dom H i^i dom dom J ) = ( S i^i T ) ) -> ( x e. ( dom dom H i^i dom dom J ) , y e. ( dom dom H i^i dom dom J ) |-> ( ( x H y ) i^i ( x J y ) ) ) = ( x e. ( S i^i T ) , y e. ( S i^i T ) |-> ( ( x H y ) i^i ( x J y ) ) ) )
15 13 13 14 syl2anc
 |-  ( ph -> ( x e. ( dom dom H i^i dom dom J ) , y e. ( dom dom H i^i dom dom J ) |-> ( ( x H y ) i^i ( x J y ) ) ) = ( x e. ( S i^i T ) , y e. ( S i^i T ) |-> ( ( x H y ) i^i ( x J y ) ) ) )
16 infsubc2
 |-  ( ( H e. ( Subcat ` C ) /\ J e. ( Subcat ` C ) ) -> ( x e. ( dom dom H i^i dom dom J ) , y e. ( dom dom H i^i dom dom J ) |-> ( ( x H y ) i^i ( x J y ) ) ) e. ( Subcat ` C ) )
17 3 4 16 syl2anc
 |-  ( ph -> ( x e. ( dom dom H i^i dom dom J ) , y e. ( dom dom H i^i dom dom J ) |-> ( ( x H y ) i^i ( x J y ) ) ) e. ( Subcat ` C ) )
18 15 17 eqeltrrd
 |-  ( ph -> ( x e. ( S i^i T ) , y e. ( S i^i T ) |-> ( ( x H y ) i^i ( x J y ) ) ) e. ( Subcat ` C ) )