Metamath Proof Explorer


Theorem imaelfm

Description: An image of a filter element is in the image filter. (Contributed by Jeff Hankins, 5-Oct-2009) (Revised by Stefan O'Rear, 6-Aug-2015)

Ref Expression
Hypothesis imaelfm.l 𝐿 = ( 𝑌 filGen 𝐵 )
Assertion imaelfm ( ( ( 𝑋𝐴𝐵 ∈ ( fBas ‘ 𝑌 ) ∧ 𝐹 : 𝑌𝑋 ) ∧ 𝑆𝐿 ) → ( 𝐹𝑆 ) ∈ ( ( 𝑋 FilMap 𝐹 ) ‘ 𝐵 ) )

Proof

Step Hyp Ref Expression
1 imaelfm.l 𝐿 = ( 𝑌 filGen 𝐵 )
2 fimass ( 𝐹 : 𝑌𝑋 → ( 𝐹𝑆 ) ⊆ 𝑋 )
3 2 3ad2ant3 ( ( 𝑋𝐴𝐵 ∈ ( fBas ‘ 𝑌 ) ∧ 𝐹 : 𝑌𝑋 ) → ( 𝐹𝑆 ) ⊆ 𝑋 )
4 ssid ( 𝐹𝑆 ) ⊆ ( 𝐹𝑆 )
5 imaeq2 ( 𝑥 = 𝑆 → ( 𝐹𝑥 ) = ( 𝐹𝑆 ) )
6 5 sseq1d ( 𝑥 = 𝑆 → ( ( 𝐹𝑥 ) ⊆ ( 𝐹𝑆 ) ↔ ( 𝐹𝑆 ) ⊆ ( 𝐹𝑆 ) ) )
7 6 rspcev ( ( 𝑆𝐿 ∧ ( 𝐹𝑆 ) ⊆ ( 𝐹𝑆 ) ) → ∃ 𝑥𝐿 ( 𝐹𝑥 ) ⊆ ( 𝐹𝑆 ) )
8 4 7 mpan2 ( 𝑆𝐿 → ∃ 𝑥𝐿 ( 𝐹𝑥 ) ⊆ ( 𝐹𝑆 ) )
9 3 8 anim12i ( ( ( 𝑋𝐴𝐵 ∈ ( fBas ‘ 𝑌 ) ∧ 𝐹 : 𝑌𝑋 ) ∧ 𝑆𝐿 ) → ( ( 𝐹𝑆 ) ⊆ 𝑋 ∧ ∃ 𝑥𝐿 ( 𝐹𝑥 ) ⊆ ( 𝐹𝑆 ) ) )
10 1 elfm2 ( ( 𝑋𝐴𝐵 ∈ ( fBas ‘ 𝑌 ) ∧ 𝐹 : 𝑌𝑋 ) → ( ( 𝐹𝑆 ) ∈ ( ( 𝑋 FilMap 𝐹 ) ‘ 𝐵 ) ↔ ( ( 𝐹𝑆 ) ⊆ 𝑋 ∧ ∃ 𝑥𝐿 ( 𝐹𝑥 ) ⊆ ( 𝐹𝑆 ) ) ) )
11 10 adantr ( ( ( 𝑋𝐴𝐵 ∈ ( fBas ‘ 𝑌 ) ∧ 𝐹 : 𝑌𝑋 ) ∧ 𝑆𝐿 ) → ( ( 𝐹𝑆 ) ∈ ( ( 𝑋 FilMap 𝐹 ) ‘ 𝐵 ) ↔ ( ( 𝐹𝑆 ) ⊆ 𝑋 ∧ ∃ 𝑥𝐿 ( 𝐹𝑥 ) ⊆ ( 𝐹𝑆 ) ) ) )
12 9 11 mpbird ( ( ( 𝑋𝐴𝐵 ∈ ( fBas ‘ 𝑌 ) ∧ 𝐹 : 𝑌𝑋 ) ∧ 𝑆𝐿 ) → ( 𝐹𝑆 ) ∈ ( ( 𝑋 FilMap 𝐹 ) ‘ 𝐵 ) )