| Step |
Hyp |
Ref |
Expression |
| 1 |
|
simpl1 |
⊢ ( ( ( 𝑌 ∈ 𝐴 ∧ 𝐿 ∈ ( Fil ‘ 𝑋 ) ∧ 𝐹 : 𝑌 ⟶ 𝑋 ) ∧ ran 𝐹 ∈ 𝐿 ) → 𝑌 ∈ 𝐴 ) |
| 2 |
|
cnvimass |
⊢ ( ◡ 𝐹 “ 𝑥 ) ⊆ dom 𝐹 |
| 3 |
|
simpl3 |
⊢ ( ( ( 𝑌 ∈ 𝐴 ∧ 𝐿 ∈ ( Fil ‘ 𝑋 ) ∧ 𝐹 : 𝑌 ⟶ 𝑋 ) ∧ ran 𝐹 ∈ 𝐿 ) → 𝐹 : 𝑌 ⟶ 𝑋 ) |
| 4 |
2 3
|
fssdm |
⊢ ( ( ( 𝑌 ∈ 𝐴 ∧ 𝐿 ∈ ( Fil ‘ 𝑋 ) ∧ 𝐹 : 𝑌 ⟶ 𝑋 ) ∧ ran 𝐹 ∈ 𝐿 ) → ( ◡ 𝐹 “ 𝑥 ) ⊆ 𝑌 ) |
| 5 |
1 4
|
sselpwd |
⊢ ( ( ( 𝑌 ∈ 𝐴 ∧ 𝐿 ∈ ( Fil ‘ 𝑋 ) ∧ 𝐹 : 𝑌 ⟶ 𝑋 ) ∧ ran 𝐹 ∈ 𝐿 ) → ( ◡ 𝐹 “ 𝑥 ) ∈ 𝒫 𝑌 ) |
| 6 |
5
|
adantr |
⊢ ( ( ( ( 𝑌 ∈ 𝐴 ∧ 𝐿 ∈ ( Fil ‘ 𝑋 ) ∧ 𝐹 : 𝑌 ⟶ 𝑋 ) ∧ ran 𝐹 ∈ 𝐿 ) ∧ 𝑥 ∈ 𝐿 ) → ( ◡ 𝐹 “ 𝑥 ) ∈ 𝒫 𝑌 ) |
| 7 |
6
|
fmpttd |
⊢ ( ( ( 𝑌 ∈ 𝐴 ∧ 𝐿 ∈ ( Fil ‘ 𝑋 ) ∧ 𝐹 : 𝑌 ⟶ 𝑋 ) ∧ ran 𝐹 ∈ 𝐿 ) → ( 𝑥 ∈ 𝐿 ↦ ( ◡ 𝐹 “ 𝑥 ) ) : 𝐿 ⟶ 𝒫 𝑌 ) |
| 8 |
7
|
frnd |
⊢ ( ( ( 𝑌 ∈ 𝐴 ∧ 𝐿 ∈ ( Fil ‘ 𝑋 ) ∧ 𝐹 : 𝑌 ⟶ 𝑋 ) ∧ ran 𝐹 ∈ 𝐿 ) → ran ( 𝑥 ∈ 𝐿 ↦ ( ◡ 𝐹 “ 𝑥 ) ) ⊆ 𝒫 𝑌 ) |
| 9 |
|
filtop |
⊢ ( 𝐿 ∈ ( Fil ‘ 𝑋 ) → 𝑋 ∈ 𝐿 ) |
| 10 |
9
|
3ad2ant2 |
⊢ ( ( 𝑌 ∈ 𝐴 ∧ 𝐿 ∈ ( Fil ‘ 𝑋 ) ∧ 𝐹 : 𝑌 ⟶ 𝑋 ) → 𝑋 ∈ 𝐿 ) |
| 11 |
10
|
adantr |
⊢ ( ( ( 𝑌 ∈ 𝐴 ∧ 𝐿 ∈ ( Fil ‘ 𝑋 ) ∧ 𝐹 : 𝑌 ⟶ 𝑋 ) ∧ ran 𝐹 ∈ 𝐿 ) → 𝑋 ∈ 𝐿 ) |
| 12 |
|
fimacnv |
⊢ ( 𝐹 : 𝑌 ⟶ 𝑋 → ( ◡ 𝐹 “ 𝑋 ) = 𝑌 ) |
| 13 |
12
|
eqcomd |
⊢ ( 𝐹 : 𝑌 ⟶ 𝑋 → 𝑌 = ( ◡ 𝐹 “ 𝑋 ) ) |
| 14 |
13
|
3ad2ant3 |
⊢ ( ( 𝑌 ∈ 𝐴 ∧ 𝐿 ∈ ( Fil ‘ 𝑋 ) ∧ 𝐹 : 𝑌 ⟶ 𝑋 ) → 𝑌 = ( ◡ 𝐹 “ 𝑋 ) ) |
| 15 |
14
|
adantr |
⊢ ( ( ( 𝑌 ∈ 𝐴 ∧ 𝐿 ∈ ( Fil ‘ 𝑋 ) ∧ 𝐹 : 𝑌 ⟶ 𝑋 ) ∧ ran 𝐹 ∈ 𝐿 ) → 𝑌 = ( ◡ 𝐹 “ 𝑋 ) ) |
| 16 |
|
imaeq2 |
⊢ ( 𝑥 = 𝑋 → ( ◡ 𝐹 “ 𝑥 ) = ( ◡ 𝐹 “ 𝑋 ) ) |
| 17 |
16
|
rspceeqv |
⊢ ( ( 𝑋 ∈ 𝐿 ∧ 𝑌 = ( ◡ 𝐹 “ 𝑋 ) ) → ∃ 𝑥 ∈ 𝐿 𝑌 = ( ◡ 𝐹 “ 𝑥 ) ) |
| 18 |
11 15 17
|
syl2anc |
⊢ ( ( ( 𝑌 ∈ 𝐴 ∧ 𝐿 ∈ ( Fil ‘ 𝑋 ) ∧ 𝐹 : 𝑌 ⟶ 𝑋 ) ∧ ran 𝐹 ∈ 𝐿 ) → ∃ 𝑥 ∈ 𝐿 𝑌 = ( ◡ 𝐹 “ 𝑥 ) ) |
| 19 |
|
eqid |
⊢ ( 𝑥 ∈ 𝐿 ↦ ( ◡ 𝐹 “ 𝑥 ) ) = ( 𝑥 ∈ 𝐿 ↦ ( ◡ 𝐹 “ 𝑥 ) ) |
| 20 |
19
|
elrnmpt |
⊢ ( 𝑌 ∈ 𝐴 → ( 𝑌 ∈ ran ( 𝑥 ∈ 𝐿 ↦ ( ◡ 𝐹 “ 𝑥 ) ) ↔ ∃ 𝑥 ∈ 𝐿 𝑌 = ( ◡ 𝐹 “ 𝑥 ) ) ) |
| 21 |
20
|
3ad2ant1 |
⊢ ( ( 𝑌 ∈ 𝐴 ∧ 𝐿 ∈ ( Fil ‘ 𝑋 ) ∧ 𝐹 : 𝑌 ⟶ 𝑋 ) → ( 𝑌 ∈ ran ( 𝑥 ∈ 𝐿 ↦ ( ◡ 𝐹 “ 𝑥 ) ) ↔ ∃ 𝑥 ∈ 𝐿 𝑌 = ( ◡ 𝐹 “ 𝑥 ) ) ) |
| 22 |
21
|
adantr |
⊢ ( ( ( 𝑌 ∈ 𝐴 ∧ 𝐿 ∈ ( Fil ‘ 𝑋 ) ∧ 𝐹 : 𝑌 ⟶ 𝑋 ) ∧ ran 𝐹 ∈ 𝐿 ) → ( 𝑌 ∈ ran ( 𝑥 ∈ 𝐿 ↦ ( ◡ 𝐹 “ 𝑥 ) ) ↔ ∃ 𝑥 ∈ 𝐿 𝑌 = ( ◡ 𝐹 “ 𝑥 ) ) ) |
| 23 |
18 22
|
mpbird |
⊢ ( ( ( 𝑌 ∈ 𝐴 ∧ 𝐿 ∈ ( Fil ‘ 𝑋 ) ∧ 𝐹 : 𝑌 ⟶ 𝑋 ) ∧ ran 𝐹 ∈ 𝐿 ) → 𝑌 ∈ ran ( 𝑥 ∈ 𝐿 ↦ ( ◡ 𝐹 “ 𝑥 ) ) ) |
| 24 |
23
|
ne0d |
⊢ ( ( ( 𝑌 ∈ 𝐴 ∧ 𝐿 ∈ ( Fil ‘ 𝑋 ) ∧ 𝐹 : 𝑌 ⟶ 𝑋 ) ∧ ran 𝐹 ∈ 𝐿 ) → ran ( 𝑥 ∈ 𝐿 ↦ ( ◡ 𝐹 “ 𝑥 ) ) ≠ ∅ ) |
| 25 |
|
0nelfil |
⊢ ( 𝐿 ∈ ( Fil ‘ 𝑋 ) → ¬ ∅ ∈ 𝐿 ) |
| 26 |
25
|
3ad2ant2 |
⊢ ( ( 𝑌 ∈ 𝐴 ∧ 𝐿 ∈ ( Fil ‘ 𝑋 ) ∧ 𝐹 : 𝑌 ⟶ 𝑋 ) → ¬ ∅ ∈ 𝐿 ) |
| 27 |
26
|
adantr |
⊢ ( ( ( 𝑌 ∈ 𝐴 ∧ 𝐿 ∈ ( Fil ‘ 𝑋 ) ∧ 𝐹 : 𝑌 ⟶ 𝑋 ) ∧ ran 𝐹 ∈ 𝐿 ) → ¬ ∅ ∈ 𝐿 ) |
| 28 |
|
0ex |
⊢ ∅ ∈ V |
| 29 |
19
|
elrnmpt |
⊢ ( ∅ ∈ V → ( ∅ ∈ ran ( 𝑥 ∈ 𝐿 ↦ ( ◡ 𝐹 “ 𝑥 ) ) ↔ ∃ 𝑥 ∈ 𝐿 ∅ = ( ◡ 𝐹 “ 𝑥 ) ) ) |
| 30 |
28 29
|
ax-mp |
⊢ ( ∅ ∈ ran ( 𝑥 ∈ 𝐿 ↦ ( ◡ 𝐹 “ 𝑥 ) ) ↔ ∃ 𝑥 ∈ 𝐿 ∅ = ( ◡ 𝐹 “ 𝑥 ) ) |
| 31 |
|
ffn |
⊢ ( 𝐹 : 𝑌 ⟶ 𝑋 → 𝐹 Fn 𝑌 ) |
| 32 |
|
fvelrnb |
⊢ ( 𝐹 Fn 𝑌 → ( 𝑦 ∈ ran 𝐹 ↔ ∃ 𝑧 ∈ 𝑌 ( 𝐹 ‘ 𝑧 ) = 𝑦 ) ) |
| 33 |
31 32
|
syl |
⊢ ( 𝐹 : 𝑌 ⟶ 𝑋 → ( 𝑦 ∈ ran 𝐹 ↔ ∃ 𝑧 ∈ 𝑌 ( 𝐹 ‘ 𝑧 ) = 𝑦 ) ) |
| 34 |
33
|
3ad2ant3 |
⊢ ( ( 𝑌 ∈ 𝐴 ∧ 𝐿 ∈ ( Fil ‘ 𝑋 ) ∧ 𝐹 : 𝑌 ⟶ 𝑋 ) → ( 𝑦 ∈ ran 𝐹 ↔ ∃ 𝑧 ∈ 𝑌 ( 𝐹 ‘ 𝑧 ) = 𝑦 ) ) |
| 35 |
34
|
ad2antrr |
⊢ ( ( ( ( 𝑌 ∈ 𝐴 ∧ 𝐿 ∈ ( Fil ‘ 𝑋 ) ∧ 𝐹 : 𝑌 ⟶ 𝑋 ) ∧ ran 𝐹 ∈ 𝐿 ) ∧ ( 𝑥 ∈ 𝐿 ∧ 𝑦 ∈ 𝑥 ) ) → ( 𝑦 ∈ ran 𝐹 ↔ ∃ 𝑧 ∈ 𝑌 ( 𝐹 ‘ 𝑧 ) = 𝑦 ) ) |
| 36 |
|
eleq1 |
⊢ ( ( 𝐹 ‘ 𝑧 ) = 𝑦 → ( ( 𝐹 ‘ 𝑧 ) ∈ 𝑥 ↔ 𝑦 ∈ 𝑥 ) ) |
| 37 |
36
|
biimparc |
⊢ ( ( 𝑦 ∈ 𝑥 ∧ ( 𝐹 ‘ 𝑧 ) = 𝑦 ) → ( 𝐹 ‘ 𝑧 ) ∈ 𝑥 ) |
| 38 |
37
|
ad2ant2l |
⊢ ( ( ( 𝑥 ∈ 𝐿 ∧ 𝑦 ∈ 𝑥 ) ∧ ( 𝑧 ∈ 𝑌 ∧ ( 𝐹 ‘ 𝑧 ) = 𝑦 ) ) → ( 𝐹 ‘ 𝑧 ) ∈ 𝑥 ) |
| 39 |
38
|
adantll |
⊢ ( ( ( ( ( 𝑌 ∈ 𝐴 ∧ 𝐿 ∈ ( Fil ‘ 𝑋 ) ∧ 𝐹 : 𝑌 ⟶ 𝑋 ) ∧ ran 𝐹 ∈ 𝐿 ) ∧ ( 𝑥 ∈ 𝐿 ∧ 𝑦 ∈ 𝑥 ) ) ∧ ( 𝑧 ∈ 𝑌 ∧ ( 𝐹 ‘ 𝑧 ) = 𝑦 ) ) → ( 𝐹 ‘ 𝑧 ) ∈ 𝑥 ) |
| 40 |
|
ffun |
⊢ ( 𝐹 : 𝑌 ⟶ 𝑋 → Fun 𝐹 ) |
| 41 |
40
|
3ad2ant3 |
⊢ ( ( 𝑌 ∈ 𝐴 ∧ 𝐿 ∈ ( Fil ‘ 𝑋 ) ∧ 𝐹 : 𝑌 ⟶ 𝑋 ) → Fun 𝐹 ) |
| 42 |
41
|
ad3antrrr |
⊢ ( ( ( ( ( 𝑌 ∈ 𝐴 ∧ 𝐿 ∈ ( Fil ‘ 𝑋 ) ∧ 𝐹 : 𝑌 ⟶ 𝑋 ) ∧ ran 𝐹 ∈ 𝐿 ) ∧ ( 𝑥 ∈ 𝐿 ∧ 𝑦 ∈ 𝑥 ) ) ∧ ( 𝑧 ∈ 𝑌 ∧ ( 𝐹 ‘ 𝑧 ) = 𝑦 ) ) → Fun 𝐹 ) |
| 43 |
|
fdm |
⊢ ( 𝐹 : 𝑌 ⟶ 𝑋 → dom 𝐹 = 𝑌 ) |
| 44 |
43
|
eleq2d |
⊢ ( 𝐹 : 𝑌 ⟶ 𝑋 → ( 𝑧 ∈ dom 𝐹 ↔ 𝑧 ∈ 𝑌 ) ) |
| 45 |
44
|
biimpar |
⊢ ( ( 𝐹 : 𝑌 ⟶ 𝑋 ∧ 𝑧 ∈ 𝑌 ) → 𝑧 ∈ dom 𝐹 ) |
| 46 |
45
|
3ad2antl3 |
⊢ ( ( ( 𝑌 ∈ 𝐴 ∧ 𝐿 ∈ ( Fil ‘ 𝑋 ) ∧ 𝐹 : 𝑌 ⟶ 𝑋 ) ∧ 𝑧 ∈ 𝑌 ) → 𝑧 ∈ dom 𝐹 ) |
| 47 |
46
|
adantlr |
⊢ ( ( ( ( 𝑌 ∈ 𝐴 ∧ 𝐿 ∈ ( Fil ‘ 𝑋 ) ∧ 𝐹 : 𝑌 ⟶ 𝑋 ) ∧ ran 𝐹 ∈ 𝐿 ) ∧ 𝑧 ∈ 𝑌 ) → 𝑧 ∈ dom 𝐹 ) |
| 48 |
47
|
ad2ant2r |
⊢ ( ( ( ( ( 𝑌 ∈ 𝐴 ∧ 𝐿 ∈ ( Fil ‘ 𝑋 ) ∧ 𝐹 : 𝑌 ⟶ 𝑋 ) ∧ ran 𝐹 ∈ 𝐿 ) ∧ ( 𝑥 ∈ 𝐿 ∧ 𝑦 ∈ 𝑥 ) ) ∧ ( 𝑧 ∈ 𝑌 ∧ ( 𝐹 ‘ 𝑧 ) = 𝑦 ) ) → 𝑧 ∈ dom 𝐹 ) |
| 49 |
|
fvimacnv |
⊢ ( ( Fun 𝐹 ∧ 𝑧 ∈ dom 𝐹 ) → ( ( 𝐹 ‘ 𝑧 ) ∈ 𝑥 ↔ 𝑧 ∈ ( ◡ 𝐹 “ 𝑥 ) ) ) |
| 50 |
42 48 49
|
syl2anc |
⊢ ( ( ( ( ( 𝑌 ∈ 𝐴 ∧ 𝐿 ∈ ( Fil ‘ 𝑋 ) ∧ 𝐹 : 𝑌 ⟶ 𝑋 ) ∧ ran 𝐹 ∈ 𝐿 ) ∧ ( 𝑥 ∈ 𝐿 ∧ 𝑦 ∈ 𝑥 ) ) ∧ ( 𝑧 ∈ 𝑌 ∧ ( 𝐹 ‘ 𝑧 ) = 𝑦 ) ) → ( ( 𝐹 ‘ 𝑧 ) ∈ 𝑥 ↔ 𝑧 ∈ ( ◡ 𝐹 “ 𝑥 ) ) ) |
| 51 |
39 50
|
mpbid |
⊢ ( ( ( ( ( 𝑌 ∈ 𝐴 ∧ 𝐿 ∈ ( Fil ‘ 𝑋 ) ∧ 𝐹 : 𝑌 ⟶ 𝑋 ) ∧ ran 𝐹 ∈ 𝐿 ) ∧ ( 𝑥 ∈ 𝐿 ∧ 𝑦 ∈ 𝑥 ) ) ∧ ( 𝑧 ∈ 𝑌 ∧ ( 𝐹 ‘ 𝑧 ) = 𝑦 ) ) → 𝑧 ∈ ( ◡ 𝐹 “ 𝑥 ) ) |
| 52 |
|
n0i |
⊢ ( 𝑧 ∈ ( ◡ 𝐹 “ 𝑥 ) → ¬ ( ◡ 𝐹 “ 𝑥 ) = ∅ ) |
| 53 |
|
eqcom |
⊢ ( ( ◡ 𝐹 “ 𝑥 ) = ∅ ↔ ∅ = ( ◡ 𝐹 “ 𝑥 ) ) |
| 54 |
52 53
|
sylnib |
⊢ ( 𝑧 ∈ ( ◡ 𝐹 “ 𝑥 ) → ¬ ∅ = ( ◡ 𝐹 “ 𝑥 ) ) |
| 55 |
51 54
|
syl |
⊢ ( ( ( ( ( 𝑌 ∈ 𝐴 ∧ 𝐿 ∈ ( Fil ‘ 𝑋 ) ∧ 𝐹 : 𝑌 ⟶ 𝑋 ) ∧ ran 𝐹 ∈ 𝐿 ) ∧ ( 𝑥 ∈ 𝐿 ∧ 𝑦 ∈ 𝑥 ) ) ∧ ( 𝑧 ∈ 𝑌 ∧ ( 𝐹 ‘ 𝑧 ) = 𝑦 ) ) → ¬ ∅ = ( ◡ 𝐹 “ 𝑥 ) ) |
| 56 |
55
|
rexlimdvaa |
⊢ ( ( ( ( 𝑌 ∈ 𝐴 ∧ 𝐿 ∈ ( Fil ‘ 𝑋 ) ∧ 𝐹 : 𝑌 ⟶ 𝑋 ) ∧ ran 𝐹 ∈ 𝐿 ) ∧ ( 𝑥 ∈ 𝐿 ∧ 𝑦 ∈ 𝑥 ) ) → ( ∃ 𝑧 ∈ 𝑌 ( 𝐹 ‘ 𝑧 ) = 𝑦 → ¬ ∅ = ( ◡ 𝐹 “ 𝑥 ) ) ) |
| 57 |
35 56
|
sylbid |
⊢ ( ( ( ( 𝑌 ∈ 𝐴 ∧ 𝐿 ∈ ( Fil ‘ 𝑋 ) ∧ 𝐹 : 𝑌 ⟶ 𝑋 ) ∧ ran 𝐹 ∈ 𝐿 ) ∧ ( 𝑥 ∈ 𝐿 ∧ 𝑦 ∈ 𝑥 ) ) → ( 𝑦 ∈ ran 𝐹 → ¬ ∅ = ( ◡ 𝐹 “ 𝑥 ) ) ) |
| 58 |
57
|
con2d |
⊢ ( ( ( ( 𝑌 ∈ 𝐴 ∧ 𝐿 ∈ ( Fil ‘ 𝑋 ) ∧ 𝐹 : 𝑌 ⟶ 𝑋 ) ∧ ran 𝐹 ∈ 𝐿 ) ∧ ( 𝑥 ∈ 𝐿 ∧ 𝑦 ∈ 𝑥 ) ) → ( ∅ = ( ◡ 𝐹 “ 𝑥 ) → ¬ 𝑦 ∈ ran 𝐹 ) ) |
| 59 |
58
|
expr |
⊢ ( ( ( ( 𝑌 ∈ 𝐴 ∧ 𝐿 ∈ ( Fil ‘ 𝑋 ) ∧ 𝐹 : 𝑌 ⟶ 𝑋 ) ∧ ran 𝐹 ∈ 𝐿 ) ∧ 𝑥 ∈ 𝐿 ) → ( 𝑦 ∈ 𝑥 → ( ∅ = ( ◡ 𝐹 “ 𝑥 ) → ¬ 𝑦 ∈ ran 𝐹 ) ) ) |
| 60 |
59
|
com23 |
⊢ ( ( ( ( 𝑌 ∈ 𝐴 ∧ 𝐿 ∈ ( Fil ‘ 𝑋 ) ∧ 𝐹 : 𝑌 ⟶ 𝑋 ) ∧ ran 𝐹 ∈ 𝐿 ) ∧ 𝑥 ∈ 𝐿 ) → ( ∅ = ( ◡ 𝐹 “ 𝑥 ) → ( 𝑦 ∈ 𝑥 → ¬ 𝑦 ∈ ran 𝐹 ) ) ) |
| 61 |
60
|
impr |
⊢ ( ( ( ( 𝑌 ∈ 𝐴 ∧ 𝐿 ∈ ( Fil ‘ 𝑋 ) ∧ 𝐹 : 𝑌 ⟶ 𝑋 ) ∧ ran 𝐹 ∈ 𝐿 ) ∧ ( 𝑥 ∈ 𝐿 ∧ ∅ = ( ◡ 𝐹 “ 𝑥 ) ) ) → ( 𝑦 ∈ 𝑥 → ¬ 𝑦 ∈ ran 𝐹 ) ) |
| 62 |
61
|
alrimiv |
⊢ ( ( ( ( 𝑌 ∈ 𝐴 ∧ 𝐿 ∈ ( Fil ‘ 𝑋 ) ∧ 𝐹 : 𝑌 ⟶ 𝑋 ) ∧ ran 𝐹 ∈ 𝐿 ) ∧ ( 𝑥 ∈ 𝐿 ∧ ∅ = ( ◡ 𝐹 “ 𝑥 ) ) ) → ∀ 𝑦 ( 𝑦 ∈ 𝑥 → ¬ 𝑦 ∈ ran 𝐹 ) ) |
| 63 |
|
imnan |
⊢ ( ( 𝑦 ∈ 𝑥 → ¬ 𝑦 ∈ ran 𝐹 ) ↔ ¬ ( 𝑦 ∈ 𝑥 ∧ 𝑦 ∈ ran 𝐹 ) ) |
| 64 |
|
elin |
⊢ ( 𝑦 ∈ ( 𝑥 ∩ ran 𝐹 ) ↔ ( 𝑦 ∈ 𝑥 ∧ 𝑦 ∈ ran 𝐹 ) ) |
| 65 |
63 64
|
xchbinxr |
⊢ ( ( 𝑦 ∈ 𝑥 → ¬ 𝑦 ∈ ran 𝐹 ) ↔ ¬ 𝑦 ∈ ( 𝑥 ∩ ran 𝐹 ) ) |
| 66 |
65
|
albii |
⊢ ( ∀ 𝑦 ( 𝑦 ∈ 𝑥 → ¬ 𝑦 ∈ ran 𝐹 ) ↔ ∀ 𝑦 ¬ 𝑦 ∈ ( 𝑥 ∩ ran 𝐹 ) ) |
| 67 |
|
eq0 |
⊢ ( ( 𝑥 ∩ ran 𝐹 ) = ∅ ↔ ∀ 𝑦 ¬ 𝑦 ∈ ( 𝑥 ∩ ran 𝐹 ) ) |
| 68 |
|
eqcom |
⊢ ( ( 𝑥 ∩ ran 𝐹 ) = ∅ ↔ ∅ = ( 𝑥 ∩ ran 𝐹 ) ) |
| 69 |
66 67 68
|
3bitr2i |
⊢ ( ∀ 𝑦 ( 𝑦 ∈ 𝑥 → ¬ 𝑦 ∈ ran 𝐹 ) ↔ ∅ = ( 𝑥 ∩ ran 𝐹 ) ) |
| 70 |
62 69
|
sylib |
⊢ ( ( ( ( 𝑌 ∈ 𝐴 ∧ 𝐿 ∈ ( Fil ‘ 𝑋 ) ∧ 𝐹 : 𝑌 ⟶ 𝑋 ) ∧ ran 𝐹 ∈ 𝐿 ) ∧ ( 𝑥 ∈ 𝐿 ∧ ∅ = ( ◡ 𝐹 “ 𝑥 ) ) ) → ∅ = ( 𝑥 ∩ ran 𝐹 ) ) |
| 71 |
|
simpll2 |
⊢ ( ( ( ( 𝑌 ∈ 𝐴 ∧ 𝐿 ∈ ( Fil ‘ 𝑋 ) ∧ 𝐹 : 𝑌 ⟶ 𝑋 ) ∧ ran 𝐹 ∈ 𝐿 ) ∧ ( 𝑥 ∈ 𝐿 ∧ ∅ = ( ◡ 𝐹 “ 𝑥 ) ) ) → 𝐿 ∈ ( Fil ‘ 𝑋 ) ) |
| 72 |
|
simprl |
⊢ ( ( ( ( 𝑌 ∈ 𝐴 ∧ 𝐿 ∈ ( Fil ‘ 𝑋 ) ∧ 𝐹 : 𝑌 ⟶ 𝑋 ) ∧ ran 𝐹 ∈ 𝐿 ) ∧ ( 𝑥 ∈ 𝐿 ∧ ∅ = ( ◡ 𝐹 “ 𝑥 ) ) ) → 𝑥 ∈ 𝐿 ) |
| 73 |
|
simplr |
⊢ ( ( ( ( 𝑌 ∈ 𝐴 ∧ 𝐿 ∈ ( Fil ‘ 𝑋 ) ∧ 𝐹 : 𝑌 ⟶ 𝑋 ) ∧ ran 𝐹 ∈ 𝐿 ) ∧ ( 𝑥 ∈ 𝐿 ∧ ∅ = ( ◡ 𝐹 “ 𝑥 ) ) ) → ran 𝐹 ∈ 𝐿 ) |
| 74 |
|
filin |
⊢ ( ( 𝐿 ∈ ( Fil ‘ 𝑋 ) ∧ 𝑥 ∈ 𝐿 ∧ ran 𝐹 ∈ 𝐿 ) → ( 𝑥 ∩ ran 𝐹 ) ∈ 𝐿 ) |
| 75 |
71 72 73 74
|
syl3anc |
⊢ ( ( ( ( 𝑌 ∈ 𝐴 ∧ 𝐿 ∈ ( Fil ‘ 𝑋 ) ∧ 𝐹 : 𝑌 ⟶ 𝑋 ) ∧ ran 𝐹 ∈ 𝐿 ) ∧ ( 𝑥 ∈ 𝐿 ∧ ∅ = ( ◡ 𝐹 “ 𝑥 ) ) ) → ( 𝑥 ∩ ran 𝐹 ) ∈ 𝐿 ) |
| 76 |
70 75
|
eqeltrd |
⊢ ( ( ( ( 𝑌 ∈ 𝐴 ∧ 𝐿 ∈ ( Fil ‘ 𝑋 ) ∧ 𝐹 : 𝑌 ⟶ 𝑋 ) ∧ ran 𝐹 ∈ 𝐿 ) ∧ ( 𝑥 ∈ 𝐿 ∧ ∅ = ( ◡ 𝐹 “ 𝑥 ) ) ) → ∅ ∈ 𝐿 ) |
| 77 |
76
|
rexlimdvaa |
⊢ ( ( ( 𝑌 ∈ 𝐴 ∧ 𝐿 ∈ ( Fil ‘ 𝑋 ) ∧ 𝐹 : 𝑌 ⟶ 𝑋 ) ∧ ran 𝐹 ∈ 𝐿 ) → ( ∃ 𝑥 ∈ 𝐿 ∅ = ( ◡ 𝐹 “ 𝑥 ) → ∅ ∈ 𝐿 ) ) |
| 78 |
30 77
|
biimtrid |
⊢ ( ( ( 𝑌 ∈ 𝐴 ∧ 𝐿 ∈ ( Fil ‘ 𝑋 ) ∧ 𝐹 : 𝑌 ⟶ 𝑋 ) ∧ ran 𝐹 ∈ 𝐿 ) → ( ∅ ∈ ran ( 𝑥 ∈ 𝐿 ↦ ( ◡ 𝐹 “ 𝑥 ) ) → ∅ ∈ 𝐿 ) ) |
| 79 |
27 78
|
mtod |
⊢ ( ( ( 𝑌 ∈ 𝐴 ∧ 𝐿 ∈ ( Fil ‘ 𝑋 ) ∧ 𝐹 : 𝑌 ⟶ 𝑋 ) ∧ ran 𝐹 ∈ 𝐿 ) → ¬ ∅ ∈ ran ( 𝑥 ∈ 𝐿 ↦ ( ◡ 𝐹 “ 𝑥 ) ) ) |
| 80 |
|
df-nel |
⊢ ( ∅ ∉ ran ( 𝑥 ∈ 𝐿 ↦ ( ◡ 𝐹 “ 𝑥 ) ) ↔ ¬ ∅ ∈ ran ( 𝑥 ∈ 𝐿 ↦ ( ◡ 𝐹 “ 𝑥 ) ) ) |
| 81 |
79 80
|
sylibr |
⊢ ( ( ( 𝑌 ∈ 𝐴 ∧ 𝐿 ∈ ( Fil ‘ 𝑋 ) ∧ 𝐹 : 𝑌 ⟶ 𝑋 ) ∧ ran 𝐹 ∈ 𝐿 ) → ∅ ∉ ran ( 𝑥 ∈ 𝐿 ↦ ( ◡ 𝐹 “ 𝑥 ) ) ) |
| 82 |
19
|
elrnmpt |
⊢ ( 𝑟 ∈ V → ( 𝑟 ∈ ran ( 𝑥 ∈ 𝐿 ↦ ( ◡ 𝐹 “ 𝑥 ) ) ↔ ∃ 𝑥 ∈ 𝐿 𝑟 = ( ◡ 𝐹 “ 𝑥 ) ) ) |
| 83 |
82
|
elv |
⊢ ( 𝑟 ∈ ran ( 𝑥 ∈ 𝐿 ↦ ( ◡ 𝐹 “ 𝑥 ) ) ↔ ∃ 𝑥 ∈ 𝐿 𝑟 = ( ◡ 𝐹 “ 𝑥 ) ) |
| 84 |
|
imaeq2 |
⊢ ( 𝑥 = 𝑢 → ( ◡ 𝐹 “ 𝑥 ) = ( ◡ 𝐹 “ 𝑢 ) ) |
| 85 |
84
|
eqeq2d |
⊢ ( 𝑥 = 𝑢 → ( 𝑟 = ( ◡ 𝐹 “ 𝑥 ) ↔ 𝑟 = ( ◡ 𝐹 “ 𝑢 ) ) ) |
| 86 |
85
|
cbvrexvw |
⊢ ( ∃ 𝑥 ∈ 𝐿 𝑟 = ( ◡ 𝐹 “ 𝑥 ) ↔ ∃ 𝑢 ∈ 𝐿 𝑟 = ( ◡ 𝐹 “ 𝑢 ) ) |
| 87 |
83 86
|
bitri |
⊢ ( 𝑟 ∈ ran ( 𝑥 ∈ 𝐿 ↦ ( ◡ 𝐹 “ 𝑥 ) ) ↔ ∃ 𝑢 ∈ 𝐿 𝑟 = ( ◡ 𝐹 “ 𝑢 ) ) |
| 88 |
19
|
elrnmpt |
⊢ ( 𝑠 ∈ V → ( 𝑠 ∈ ran ( 𝑥 ∈ 𝐿 ↦ ( ◡ 𝐹 “ 𝑥 ) ) ↔ ∃ 𝑥 ∈ 𝐿 𝑠 = ( ◡ 𝐹 “ 𝑥 ) ) ) |
| 89 |
88
|
elv |
⊢ ( 𝑠 ∈ ran ( 𝑥 ∈ 𝐿 ↦ ( ◡ 𝐹 “ 𝑥 ) ) ↔ ∃ 𝑥 ∈ 𝐿 𝑠 = ( ◡ 𝐹 “ 𝑥 ) ) |
| 90 |
|
imaeq2 |
⊢ ( 𝑥 = 𝑣 → ( ◡ 𝐹 “ 𝑥 ) = ( ◡ 𝐹 “ 𝑣 ) ) |
| 91 |
90
|
eqeq2d |
⊢ ( 𝑥 = 𝑣 → ( 𝑠 = ( ◡ 𝐹 “ 𝑥 ) ↔ 𝑠 = ( ◡ 𝐹 “ 𝑣 ) ) ) |
| 92 |
91
|
cbvrexvw |
⊢ ( ∃ 𝑥 ∈ 𝐿 𝑠 = ( ◡ 𝐹 “ 𝑥 ) ↔ ∃ 𝑣 ∈ 𝐿 𝑠 = ( ◡ 𝐹 “ 𝑣 ) ) |
| 93 |
89 92
|
bitri |
⊢ ( 𝑠 ∈ ran ( 𝑥 ∈ 𝐿 ↦ ( ◡ 𝐹 “ 𝑥 ) ) ↔ ∃ 𝑣 ∈ 𝐿 𝑠 = ( ◡ 𝐹 “ 𝑣 ) ) |
| 94 |
87 93
|
anbi12i |
⊢ ( ( 𝑟 ∈ ran ( 𝑥 ∈ 𝐿 ↦ ( ◡ 𝐹 “ 𝑥 ) ) ∧ 𝑠 ∈ ran ( 𝑥 ∈ 𝐿 ↦ ( ◡ 𝐹 “ 𝑥 ) ) ) ↔ ( ∃ 𝑢 ∈ 𝐿 𝑟 = ( ◡ 𝐹 “ 𝑢 ) ∧ ∃ 𝑣 ∈ 𝐿 𝑠 = ( ◡ 𝐹 “ 𝑣 ) ) ) |
| 95 |
|
reeanv |
⊢ ( ∃ 𝑢 ∈ 𝐿 ∃ 𝑣 ∈ 𝐿 ( 𝑟 = ( ◡ 𝐹 “ 𝑢 ) ∧ 𝑠 = ( ◡ 𝐹 “ 𝑣 ) ) ↔ ( ∃ 𝑢 ∈ 𝐿 𝑟 = ( ◡ 𝐹 “ 𝑢 ) ∧ ∃ 𝑣 ∈ 𝐿 𝑠 = ( ◡ 𝐹 “ 𝑣 ) ) ) |
| 96 |
94 95
|
bitr4i |
⊢ ( ( 𝑟 ∈ ran ( 𝑥 ∈ 𝐿 ↦ ( ◡ 𝐹 “ 𝑥 ) ) ∧ 𝑠 ∈ ran ( 𝑥 ∈ 𝐿 ↦ ( ◡ 𝐹 “ 𝑥 ) ) ) ↔ ∃ 𝑢 ∈ 𝐿 ∃ 𝑣 ∈ 𝐿 ( 𝑟 = ( ◡ 𝐹 “ 𝑢 ) ∧ 𝑠 = ( ◡ 𝐹 “ 𝑣 ) ) ) |
| 97 |
|
filin |
⊢ ( ( 𝐿 ∈ ( Fil ‘ 𝑋 ) ∧ 𝑢 ∈ 𝐿 ∧ 𝑣 ∈ 𝐿 ) → ( 𝑢 ∩ 𝑣 ) ∈ 𝐿 ) |
| 98 |
97
|
3expb |
⊢ ( ( 𝐿 ∈ ( Fil ‘ 𝑋 ) ∧ ( 𝑢 ∈ 𝐿 ∧ 𝑣 ∈ 𝐿 ) ) → ( 𝑢 ∩ 𝑣 ) ∈ 𝐿 ) |
| 99 |
98
|
adantlr |
⊢ ( ( ( 𝐿 ∈ ( Fil ‘ 𝑋 ) ∧ 𝐹 : 𝑌 ⟶ 𝑋 ) ∧ ( 𝑢 ∈ 𝐿 ∧ 𝑣 ∈ 𝐿 ) ) → ( 𝑢 ∩ 𝑣 ) ∈ 𝐿 ) |
| 100 |
|
eqidd |
⊢ ( ( ( 𝐿 ∈ ( Fil ‘ 𝑋 ) ∧ 𝐹 : 𝑌 ⟶ 𝑋 ) ∧ ( 𝑢 ∈ 𝐿 ∧ 𝑣 ∈ 𝐿 ) ) → ( ◡ 𝐹 “ ( 𝑢 ∩ 𝑣 ) ) = ( ◡ 𝐹 “ ( 𝑢 ∩ 𝑣 ) ) ) |
| 101 |
|
imaeq2 |
⊢ ( 𝑥 = ( 𝑢 ∩ 𝑣 ) → ( ◡ 𝐹 “ 𝑥 ) = ( ◡ 𝐹 “ ( 𝑢 ∩ 𝑣 ) ) ) |
| 102 |
101
|
rspceeqv |
⊢ ( ( ( 𝑢 ∩ 𝑣 ) ∈ 𝐿 ∧ ( ◡ 𝐹 “ ( 𝑢 ∩ 𝑣 ) ) = ( ◡ 𝐹 “ ( 𝑢 ∩ 𝑣 ) ) ) → ∃ 𝑥 ∈ 𝐿 ( ◡ 𝐹 “ ( 𝑢 ∩ 𝑣 ) ) = ( ◡ 𝐹 “ 𝑥 ) ) |
| 103 |
99 100 102
|
syl2anc |
⊢ ( ( ( 𝐿 ∈ ( Fil ‘ 𝑋 ) ∧ 𝐹 : 𝑌 ⟶ 𝑋 ) ∧ ( 𝑢 ∈ 𝐿 ∧ 𝑣 ∈ 𝐿 ) ) → ∃ 𝑥 ∈ 𝐿 ( ◡ 𝐹 “ ( 𝑢 ∩ 𝑣 ) ) = ( ◡ 𝐹 “ 𝑥 ) ) |
| 104 |
103
|
3adantl1 |
⊢ ( ( ( 𝑌 ∈ 𝐴 ∧ 𝐿 ∈ ( Fil ‘ 𝑋 ) ∧ 𝐹 : 𝑌 ⟶ 𝑋 ) ∧ ( 𝑢 ∈ 𝐿 ∧ 𝑣 ∈ 𝐿 ) ) → ∃ 𝑥 ∈ 𝐿 ( ◡ 𝐹 “ ( 𝑢 ∩ 𝑣 ) ) = ( ◡ 𝐹 “ 𝑥 ) ) |
| 105 |
104
|
ad2ant2r |
⊢ ( ( ( ( 𝑌 ∈ 𝐴 ∧ 𝐿 ∈ ( Fil ‘ 𝑋 ) ∧ 𝐹 : 𝑌 ⟶ 𝑋 ) ∧ ran 𝐹 ∈ 𝐿 ) ∧ ( ( 𝑢 ∈ 𝐿 ∧ 𝑣 ∈ 𝐿 ) ∧ ( 𝑟 = ( ◡ 𝐹 “ 𝑢 ) ∧ 𝑠 = ( ◡ 𝐹 “ 𝑣 ) ) ) ) → ∃ 𝑥 ∈ 𝐿 ( ◡ 𝐹 “ ( 𝑢 ∩ 𝑣 ) ) = ( ◡ 𝐹 “ 𝑥 ) ) |
| 106 |
|
simpll1 |
⊢ ( ( ( ( 𝑌 ∈ 𝐴 ∧ 𝐿 ∈ ( Fil ‘ 𝑋 ) ∧ 𝐹 : 𝑌 ⟶ 𝑋 ) ∧ ran 𝐹 ∈ 𝐿 ) ∧ ( ( 𝑢 ∈ 𝐿 ∧ 𝑣 ∈ 𝐿 ) ∧ ( 𝑟 = ( ◡ 𝐹 “ 𝑢 ) ∧ 𝑠 = ( ◡ 𝐹 “ 𝑣 ) ) ) ) → 𝑌 ∈ 𝐴 ) |
| 107 |
|
cnvimass |
⊢ ( ◡ 𝐹 “ ( 𝑢 ∩ 𝑣 ) ) ⊆ dom 𝐹 |
| 108 |
107 43
|
sseqtrid |
⊢ ( 𝐹 : 𝑌 ⟶ 𝑋 → ( ◡ 𝐹 “ ( 𝑢 ∩ 𝑣 ) ) ⊆ 𝑌 ) |
| 109 |
108
|
3ad2ant3 |
⊢ ( ( 𝑌 ∈ 𝐴 ∧ 𝐿 ∈ ( Fil ‘ 𝑋 ) ∧ 𝐹 : 𝑌 ⟶ 𝑋 ) → ( ◡ 𝐹 “ ( 𝑢 ∩ 𝑣 ) ) ⊆ 𝑌 ) |
| 110 |
109
|
ad2antrr |
⊢ ( ( ( ( 𝑌 ∈ 𝐴 ∧ 𝐿 ∈ ( Fil ‘ 𝑋 ) ∧ 𝐹 : 𝑌 ⟶ 𝑋 ) ∧ ran 𝐹 ∈ 𝐿 ) ∧ ( ( 𝑢 ∈ 𝐿 ∧ 𝑣 ∈ 𝐿 ) ∧ ( 𝑟 = ( ◡ 𝐹 “ 𝑢 ) ∧ 𝑠 = ( ◡ 𝐹 “ 𝑣 ) ) ) ) → ( ◡ 𝐹 “ ( 𝑢 ∩ 𝑣 ) ) ⊆ 𝑌 ) |
| 111 |
106 110
|
ssexd |
⊢ ( ( ( ( 𝑌 ∈ 𝐴 ∧ 𝐿 ∈ ( Fil ‘ 𝑋 ) ∧ 𝐹 : 𝑌 ⟶ 𝑋 ) ∧ ran 𝐹 ∈ 𝐿 ) ∧ ( ( 𝑢 ∈ 𝐿 ∧ 𝑣 ∈ 𝐿 ) ∧ ( 𝑟 = ( ◡ 𝐹 “ 𝑢 ) ∧ 𝑠 = ( ◡ 𝐹 “ 𝑣 ) ) ) ) → ( ◡ 𝐹 “ ( 𝑢 ∩ 𝑣 ) ) ∈ V ) |
| 112 |
19
|
elrnmpt |
⊢ ( ( ◡ 𝐹 “ ( 𝑢 ∩ 𝑣 ) ) ∈ V → ( ( ◡ 𝐹 “ ( 𝑢 ∩ 𝑣 ) ) ∈ ran ( 𝑥 ∈ 𝐿 ↦ ( ◡ 𝐹 “ 𝑥 ) ) ↔ ∃ 𝑥 ∈ 𝐿 ( ◡ 𝐹 “ ( 𝑢 ∩ 𝑣 ) ) = ( ◡ 𝐹 “ 𝑥 ) ) ) |
| 113 |
111 112
|
syl |
⊢ ( ( ( ( 𝑌 ∈ 𝐴 ∧ 𝐿 ∈ ( Fil ‘ 𝑋 ) ∧ 𝐹 : 𝑌 ⟶ 𝑋 ) ∧ ran 𝐹 ∈ 𝐿 ) ∧ ( ( 𝑢 ∈ 𝐿 ∧ 𝑣 ∈ 𝐿 ) ∧ ( 𝑟 = ( ◡ 𝐹 “ 𝑢 ) ∧ 𝑠 = ( ◡ 𝐹 “ 𝑣 ) ) ) ) → ( ( ◡ 𝐹 “ ( 𝑢 ∩ 𝑣 ) ) ∈ ran ( 𝑥 ∈ 𝐿 ↦ ( ◡ 𝐹 “ 𝑥 ) ) ↔ ∃ 𝑥 ∈ 𝐿 ( ◡ 𝐹 “ ( 𝑢 ∩ 𝑣 ) ) = ( ◡ 𝐹 “ 𝑥 ) ) ) |
| 114 |
105 113
|
mpbird |
⊢ ( ( ( ( 𝑌 ∈ 𝐴 ∧ 𝐿 ∈ ( Fil ‘ 𝑋 ) ∧ 𝐹 : 𝑌 ⟶ 𝑋 ) ∧ ran 𝐹 ∈ 𝐿 ) ∧ ( ( 𝑢 ∈ 𝐿 ∧ 𝑣 ∈ 𝐿 ) ∧ ( 𝑟 = ( ◡ 𝐹 “ 𝑢 ) ∧ 𝑠 = ( ◡ 𝐹 “ 𝑣 ) ) ) ) → ( ◡ 𝐹 “ ( 𝑢 ∩ 𝑣 ) ) ∈ ran ( 𝑥 ∈ 𝐿 ↦ ( ◡ 𝐹 “ 𝑥 ) ) ) |
| 115 |
|
simprrl |
⊢ ( ( ( ( 𝑌 ∈ 𝐴 ∧ 𝐿 ∈ ( Fil ‘ 𝑋 ) ∧ 𝐹 : 𝑌 ⟶ 𝑋 ) ∧ ran 𝐹 ∈ 𝐿 ) ∧ ( ( 𝑢 ∈ 𝐿 ∧ 𝑣 ∈ 𝐿 ) ∧ ( 𝑟 = ( ◡ 𝐹 “ 𝑢 ) ∧ 𝑠 = ( ◡ 𝐹 “ 𝑣 ) ) ) ) → 𝑟 = ( ◡ 𝐹 “ 𝑢 ) ) |
| 116 |
|
simprrr |
⊢ ( ( ( ( 𝑌 ∈ 𝐴 ∧ 𝐿 ∈ ( Fil ‘ 𝑋 ) ∧ 𝐹 : 𝑌 ⟶ 𝑋 ) ∧ ran 𝐹 ∈ 𝐿 ) ∧ ( ( 𝑢 ∈ 𝐿 ∧ 𝑣 ∈ 𝐿 ) ∧ ( 𝑟 = ( ◡ 𝐹 “ 𝑢 ) ∧ 𝑠 = ( ◡ 𝐹 “ 𝑣 ) ) ) ) → 𝑠 = ( ◡ 𝐹 “ 𝑣 ) ) |
| 117 |
115 116
|
ineq12d |
⊢ ( ( ( ( 𝑌 ∈ 𝐴 ∧ 𝐿 ∈ ( Fil ‘ 𝑋 ) ∧ 𝐹 : 𝑌 ⟶ 𝑋 ) ∧ ran 𝐹 ∈ 𝐿 ) ∧ ( ( 𝑢 ∈ 𝐿 ∧ 𝑣 ∈ 𝐿 ) ∧ ( 𝑟 = ( ◡ 𝐹 “ 𝑢 ) ∧ 𝑠 = ( ◡ 𝐹 “ 𝑣 ) ) ) ) → ( 𝑟 ∩ 𝑠 ) = ( ( ◡ 𝐹 “ 𝑢 ) ∩ ( ◡ 𝐹 “ 𝑣 ) ) ) |
| 118 |
|
funcnvcnv |
⊢ ( Fun 𝐹 → Fun ◡ ◡ 𝐹 ) |
| 119 |
|
imain |
⊢ ( Fun ◡ ◡ 𝐹 → ( ◡ 𝐹 “ ( 𝑢 ∩ 𝑣 ) ) = ( ( ◡ 𝐹 “ 𝑢 ) ∩ ( ◡ 𝐹 “ 𝑣 ) ) ) |
| 120 |
40 118 119
|
3syl |
⊢ ( 𝐹 : 𝑌 ⟶ 𝑋 → ( ◡ 𝐹 “ ( 𝑢 ∩ 𝑣 ) ) = ( ( ◡ 𝐹 “ 𝑢 ) ∩ ( ◡ 𝐹 “ 𝑣 ) ) ) |
| 121 |
120
|
3ad2ant3 |
⊢ ( ( 𝑌 ∈ 𝐴 ∧ 𝐿 ∈ ( Fil ‘ 𝑋 ) ∧ 𝐹 : 𝑌 ⟶ 𝑋 ) → ( ◡ 𝐹 “ ( 𝑢 ∩ 𝑣 ) ) = ( ( ◡ 𝐹 “ 𝑢 ) ∩ ( ◡ 𝐹 “ 𝑣 ) ) ) |
| 122 |
121
|
ad2antrr |
⊢ ( ( ( ( 𝑌 ∈ 𝐴 ∧ 𝐿 ∈ ( Fil ‘ 𝑋 ) ∧ 𝐹 : 𝑌 ⟶ 𝑋 ) ∧ ran 𝐹 ∈ 𝐿 ) ∧ ( ( 𝑢 ∈ 𝐿 ∧ 𝑣 ∈ 𝐿 ) ∧ ( 𝑟 = ( ◡ 𝐹 “ 𝑢 ) ∧ 𝑠 = ( ◡ 𝐹 “ 𝑣 ) ) ) ) → ( ◡ 𝐹 “ ( 𝑢 ∩ 𝑣 ) ) = ( ( ◡ 𝐹 “ 𝑢 ) ∩ ( ◡ 𝐹 “ 𝑣 ) ) ) |
| 123 |
117 122
|
eqtr4d |
⊢ ( ( ( ( 𝑌 ∈ 𝐴 ∧ 𝐿 ∈ ( Fil ‘ 𝑋 ) ∧ 𝐹 : 𝑌 ⟶ 𝑋 ) ∧ ran 𝐹 ∈ 𝐿 ) ∧ ( ( 𝑢 ∈ 𝐿 ∧ 𝑣 ∈ 𝐿 ) ∧ ( 𝑟 = ( ◡ 𝐹 “ 𝑢 ) ∧ 𝑠 = ( ◡ 𝐹 “ 𝑣 ) ) ) ) → ( 𝑟 ∩ 𝑠 ) = ( ◡ 𝐹 “ ( 𝑢 ∩ 𝑣 ) ) ) |
| 124 |
|
eqimss2 |
⊢ ( ( 𝑟 ∩ 𝑠 ) = ( ◡ 𝐹 “ ( 𝑢 ∩ 𝑣 ) ) → ( ◡ 𝐹 “ ( 𝑢 ∩ 𝑣 ) ) ⊆ ( 𝑟 ∩ 𝑠 ) ) |
| 125 |
123 124
|
syl |
⊢ ( ( ( ( 𝑌 ∈ 𝐴 ∧ 𝐿 ∈ ( Fil ‘ 𝑋 ) ∧ 𝐹 : 𝑌 ⟶ 𝑋 ) ∧ ran 𝐹 ∈ 𝐿 ) ∧ ( ( 𝑢 ∈ 𝐿 ∧ 𝑣 ∈ 𝐿 ) ∧ ( 𝑟 = ( ◡ 𝐹 “ 𝑢 ) ∧ 𝑠 = ( ◡ 𝐹 “ 𝑣 ) ) ) ) → ( ◡ 𝐹 “ ( 𝑢 ∩ 𝑣 ) ) ⊆ ( 𝑟 ∩ 𝑠 ) ) |
| 126 |
|
sseq1 |
⊢ ( 𝑡 = ( ◡ 𝐹 “ ( 𝑢 ∩ 𝑣 ) ) → ( 𝑡 ⊆ ( 𝑟 ∩ 𝑠 ) ↔ ( ◡ 𝐹 “ ( 𝑢 ∩ 𝑣 ) ) ⊆ ( 𝑟 ∩ 𝑠 ) ) ) |
| 127 |
126
|
rspcev |
⊢ ( ( ( ◡ 𝐹 “ ( 𝑢 ∩ 𝑣 ) ) ∈ ran ( 𝑥 ∈ 𝐿 ↦ ( ◡ 𝐹 “ 𝑥 ) ) ∧ ( ◡ 𝐹 “ ( 𝑢 ∩ 𝑣 ) ) ⊆ ( 𝑟 ∩ 𝑠 ) ) → ∃ 𝑡 ∈ ran ( 𝑥 ∈ 𝐿 ↦ ( ◡ 𝐹 “ 𝑥 ) ) 𝑡 ⊆ ( 𝑟 ∩ 𝑠 ) ) |
| 128 |
114 125 127
|
syl2anc |
⊢ ( ( ( ( 𝑌 ∈ 𝐴 ∧ 𝐿 ∈ ( Fil ‘ 𝑋 ) ∧ 𝐹 : 𝑌 ⟶ 𝑋 ) ∧ ran 𝐹 ∈ 𝐿 ) ∧ ( ( 𝑢 ∈ 𝐿 ∧ 𝑣 ∈ 𝐿 ) ∧ ( 𝑟 = ( ◡ 𝐹 “ 𝑢 ) ∧ 𝑠 = ( ◡ 𝐹 “ 𝑣 ) ) ) ) → ∃ 𝑡 ∈ ran ( 𝑥 ∈ 𝐿 ↦ ( ◡ 𝐹 “ 𝑥 ) ) 𝑡 ⊆ ( 𝑟 ∩ 𝑠 ) ) |
| 129 |
128
|
exp32 |
⊢ ( ( ( 𝑌 ∈ 𝐴 ∧ 𝐿 ∈ ( Fil ‘ 𝑋 ) ∧ 𝐹 : 𝑌 ⟶ 𝑋 ) ∧ ran 𝐹 ∈ 𝐿 ) → ( ( 𝑢 ∈ 𝐿 ∧ 𝑣 ∈ 𝐿 ) → ( ( 𝑟 = ( ◡ 𝐹 “ 𝑢 ) ∧ 𝑠 = ( ◡ 𝐹 “ 𝑣 ) ) → ∃ 𝑡 ∈ ran ( 𝑥 ∈ 𝐿 ↦ ( ◡ 𝐹 “ 𝑥 ) ) 𝑡 ⊆ ( 𝑟 ∩ 𝑠 ) ) ) ) |
| 130 |
129
|
rexlimdvv |
⊢ ( ( ( 𝑌 ∈ 𝐴 ∧ 𝐿 ∈ ( Fil ‘ 𝑋 ) ∧ 𝐹 : 𝑌 ⟶ 𝑋 ) ∧ ran 𝐹 ∈ 𝐿 ) → ( ∃ 𝑢 ∈ 𝐿 ∃ 𝑣 ∈ 𝐿 ( 𝑟 = ( ◡ 𝐹 “ 𝑢 ) ∧ 𝑠 = ( ◡ 𝐹 “ 𝑣 ) ) → ∃ 𝑡 ∈ ran ( 𝑥 ∈ 𝐿 ↦ ( ◡ 𝐹 “ 𝑥 ) ) 𝑡 ⊆ ( 𝑟 ∩ 𝑠 ) ) ) |
| 131 |
96 130
|
biimtrid |
⊢ ( ( ( 𝑌 ∈ 𝐴 ∧ 𝐿 ∈ ( Fil ‘ 𝑋 ) ∧ 𝐹 : 𝑌 ⟶ 𝑋 ) ∧ ran 𝐹 ∈ 𝐿 ) → ( ( 𝑟 ∈ ran ( 𝑥 ∈ 𝐿 ↦ ( ◡ 𝐹 “ 𝑥 ) ) ∧ 𝑠 ∈ ran ( 𝑥 ∈ 𝐿 ↦ ( ◡ 𝐹 “ 𝑥 ) ) ) → ∃ 𝑡 ∈ ran ( 𝑥 ∈ 𝐿 ↦ ( ◡ 𝐹 “ 𝑥 ) ) 𝑡 ⊆ ( 𝑟 ∩ 𝑠 ) ) ) |
| 132 |
131
|
ralrimivv |
⊢ ( ( ( 𝑌 ∈ 𝐴 ∧ 𝐿 ∈ ( Fil ‘ 𝑋 ) ∧ 𝐹 : 𝑌 ⟶ 𝑋 ) ∧ ran 𝐹 ∈ 𝐿 ) → ∀ 𝑟 ∈ ran ( 𝑥 ∈ 𝐿 ↦ ( ◡ 𝐹 “ 𝑥 ) ) ∀ 𝑠 ∈ ran ( 𝑥 ∈ 𝐿 ↦ ( ◡ 𝐹 “ 𝑥 ) ) ∃ 𝑡 ∈ ran ( 𝑥 ∈ 𝐿 ↦ ( ◡ 𝐹 “ 𝑥 ) ) 𝑡 ⊆ ( 𝑟 ∩ 𝑠 ) ) |
| 133 |
24 81 132
|
3jca |
⊢ ( ( ( 𝑌 ∈ 𝐴 ∧ 𝐿 ∈ ( Fil ‘ 𝑋 ) ∧ 𝐹 : 𝑌 ⟶ 𝑋 ) ∧ ran 𝐹 ∈ 𝐿 ) → ( ran ( 𝑥 ∈ 𝐿 ↦ ( ◡ 𝐹 “ 𝑥 ) ) ≠ ∅ ∧ ∅ ∉ ran ( 𝑥 ∈ 𝐿 ↦ ( ◡ 𝐹 “ 𝑥 ) ) ∧ ∀ 𝑟 ∈ ran ( 𝑥 ∈ 𝐿 ↦ ( ◡ 𝐹 “ 𝑥 ) ) ∀ 𝑠 ∈ ran ( 𝑥 ∈ 𝐿 ↦ ( ◡ 𝐹 “ 𝑥 ) ) ∃ 𝑡 ∈ ran ( 𝑥 ∈ 𝐿 ↦ ( ◡ 𝐹 “ 𝑥 ) ) 𝑡 ⊆ ( 𝑟 ∩ 𝑠 ) ) ) |
| 134 |
|
isfbas2 |
⊢ ( 𝑌 ∈ 𝐴 → ( ran ( 𝑥 ∈ 𝐿 ↦ ( ◡ 𝐹 “ 𝑥 ) ) ∈ ( fBas ‘ 𝑌 ) ↔ ( ran ( 𝑥 ∈ 𝐿 ↦ ( ◡ 𝐹 “ 𝑥 ) ) ⊆ 𝒫 𝑌 ∧ ( ran ( 𝑥 ∈ 𝐿 ↦ ( ◡ 𝐹 “ 𝑥 ) ) ≠ ∅ ∧ ∅ ∉ ran ( 𝑥 ∈ 𝐿 ↦ ( ◡ 𝐹 “ 𝑥 ) ) ∧ ∀ 𝑟 ∈ ran ( 𝑥 ∈ 𝐿 ↦ ( ◡ 𝐹 “ 𝑥 ) ) ∀ 𝑠 ∈ ran ( 𝑥 ∈ 𝐿 ↦ ( ◡ 𝐹 “ 𝑥 ) ) ∃ 𝑡 ∈ ran ( 𝑥 ∈ 𝐿 ↦ ( ◡ 𝐹 “ 𝑥 ) ) 𝑡 ⊆ ( 𝑟 ∩ 𝑠 ) ) ) ) ) |
| 135 |
1 134
|
syl |
⊢ ( ( ( 𝑌 ∈ 𝐴 ∧ 𝐿 ∈ ( Fil ‘ 𝑋 ) ∧ 𝐹 : 𝑌 ⟶ 𝑋 ) ∧ ran 𝐹 ∈ 𝐿 ) → ( ran ( 𝑥 ∈ 𝐿 ↦ ( ◡ 𝐹 “ 𝑥 ) ) ∈ ( fBas ‘ 𝑌 ) ↔ ( ran ( 𝑥 ∈ 𝐿 ↦ ( ◡ 𝐹 “ 𝑥 ) ) ⊆ 𝒫 𝑌 ∧ ( ran ( 𝑥 ∈ 𝐿 ↦ ( ◡ 𝐹 “ 𝑥 ) ) ≠ ∅ ∧ ∅ ∉ ran ( 𝑥 ∈ 𝐿 ↦ ( ◡ 𝐹 “ 𝑥 ) ) ∧ ∀ 𝑟 ∈ ran ( 𝑥 ∈ 𝐿 ↦ ( ◡ 𝐹 “ 𝑥 ) ) ∀ 𝑠 ∈ ran ( 𝑥 ∈ 𝐿 ↦ ( ◡ 𝐹 “ 𝑥 ) ) ∃ 𝑡 ∈ ran ( 𝑥 ∈ 𝐿 ↦ ( ◡ 𝐹 “ 𝑥 ) ) 𝑡 ⊆ ( 𝑟 ∩ 𝑠 ) ) ) ) ) |
| 136 |
8 133 135
|
mpbir2and |
⊢ ( ( ( 𝑌 ∈ 𝐴 ∧ 𝐿 ∈ ( Fil ‘ 𝑋 ) ∧ 𝐹 : 𝑌 ⟶ 𝑋 ) ∧ ran 𝐹 ∈ 𝐿 ) → ran ( 𝑥 ∈ 𝐿 ↦ ( ◡ 𝐹 “ 𝑥 ) ) ∈ ( fBas ‘ 𝑌 ) ) |