| Step |
Hyp |
Ref |
Expression |
| 1 |
|
simpl1 |
|- ( ( ( Y e. A /\ L e. ( Fil ` X ) /\ F : Y --> X ) /\ ran F e. L ) -> Y e. A ) |
| 2 |
|
cnvimass |
|- ( `' F " x ) C_ dom F |
| 3 |
|
simpl3 |
|- ( ( ( Y e. A /\ L e. ( Fil ` X ) /\ F : Y --> X ) /\ ran F e. L ) -> F : Y --> X ) |
| 4 |
2 3
|
fssdm |
|- ( ( ( Y e. A /\ L e. ( Fil ` X ) /\ F : Y --> X ) /\ ran F e. L ) -> ( `' F " x ) C_ Y ) |
| 5 |
1 4
|
sselpwd |
|- ( ( ( Y e. A /\ L e. ( Fil ` X ) /\ F : Y --> X ) /\ ran F e. L ) -> ( `' F " x ) e. ~P Y ) |
| 6 |
5
|
adantr |
|- ( ( ( ( Y e. A /\ L e. ( Fil ` X ) /\ F : Y --> X ) /\ ran F e. L ) /\ x e. L ) -> ( `' F " x ) e. ~P Y ) |
| 7 |
6
|
fmpttd |
|- ( ( ( Y e. A /\ L e. ( Fil ` X ) /\ F : Y --> X ) /\ ran F e. L ) -> ( x e. L |-> ( `' F " x ) ) : L --> ~P Y ) |
| 8 |
7
|
frnd |
|- ( ( ( Y e. A /\ L e. ( Fil ` X ) /\ F : Y --> X ) /\ ran F e. L ) -> ran ( x e. L |-> ( `' F " x ) ) C_ ~P Y ) |
| 9 |
|
filtop |
|- ( L e. ( Fil ` X ) -> X e. L ) |
| 10 |
9
|
3ad2ant2 |
|- ( ( Y e. A /\ L e. ( Fil ` X ) /\ F : Y --> X ) -> X e. L ) |
| 11 |
10
|
adantr |
|- ( ( ( Y e. A /\ L e. ( Fil ` X ) /\ F : Y --> X ) /\ ran F e. L ) -> X e. L ) |
| 12 |
|
fimacnv |
|- ( F : Y --> X -> ( `' F " X ) = Y ) |
| 13 |
12
|
eqcomd |
|- ( F : Y --> X -> Y = ( `' F " X ) ) |
| 14 |
13
|
3ad2ant3 |
|- ( ( Y e. A /\ L e. ( Fil ` X ) /\ F : Y --> X ) -> Y = ( `' F " X ) ) |
| 15 |
14
|
adantr |
|- ( ( ( Y e. A /\ L e. ( Fil ` X ) /\ F : Y --> X ) /\ ran F e. L ) -> Y = ( `' F " X ) ) |
| 16 |
|
imaeq2 |
|- ( x = X -> ( `' F " x ) = ( `' F " X ) ) |
| 17 |
16
|
rspceeqv |
|- ( ( X e. L /\ Y = ( `' F " X ) ) -> E. x e. L Y = ( `' F " x ) ) |
| 18 |
11 15 17
|
syl2anc |
|- ( ( ( Y e. A /\ L e. ( Fil ` X ) /\ F : Y --> X ) /\ ran F e. L ) -> E. x e. L Y = ( `' F " x ) ) |
| 19 |
|
eqid |
|- ( x e. L |-> ( `' F " x ) ) = ( x e. L |-> ( `' F " x ) ) |
| 20 |
19
|
elrnmpt |
|- ( Y e. A -> ( Y e. ran ( x e. L |-> ( `' F " x ) ) <-> E. x e. L Y = ( `' F " x ) ) ) |
| 21 |
20
|
3ad2ant1 |
|- ( ( Y e. A /\ L e. ( Fil ` X ) /\ F : Y --> X ) -> ( Y e. ran ( x e. L |-> ( `' F " x ) ) <-> E. x e. L Y = ( `' F " x ) ) ) |
| 22 |
21
|
adantr |
|- ( ( ( Y e. A /\ L e. ( Fil ` X ) /\ F : Y --> X ) /\ ran F e. L ) -> ( Y e. ran ( x e. L |-> ( `' F " x ) ) <-> E. x e. L Y = ( `' F " x ) ) ) |
| 23 |
18 22
|
mpbird |
|- ( ( ( Y e. A /\ L e. ( Fil ` X ) /\ F : Y --> X ) /\ ran F e. L ) -> Y e. ran ( x e. L |-> ( `' F " x ) ) ) |
| 24 |
23
|
ne0d |
|- ( ( ( Y e. A /\ L e. ( Fil ` X ) /\ F : Y --> X ) /\ ran F e. L ) -> ran ( x e. L |-> ( `' F " x ) ) =/= (/) ) |
| 25 |
|
0nelfil |
|- ( L e. ( Fil ` X ) -> -. (/) e. L ) |
| 26 |
25
|
3ad2ant2 |
|- ( ( Y e. A /\ L e. ( Fil ` X ) /\ F : Y --> X ) -> -. (/) e. L ) |
| 27 |
26
|
adantr |
|- ( ( ( Y e. A /\ L e. ( Fil ` X ) /\ F : Y --> X ) /\ ran F e. L ) -> -. (/) e. L ) |
| 28 |
|
0ex |
|- (/) e. _V |
| 29 |
19
|
elrnmpt |
|- ( (/) e. _V -> ( (/) e. ran ( x e. L |-> ( `' F " x ) ) <-> E. x e. L (/) = ( `' F " x ) ) ) |
| 30 |
28 29
|
ax-mp |
|- ( (/) e. ran ( x e. L |-> ( `' F " x ) ) <-> E. x e. L (/) = ( `' F " x ) ) |
| 31 |
|
ffn |
|- ( F : Y --> X -> F Fn Y ) |
| 32 |
|
fvelrnb |
|- ( F Fn Y -> ( y e. ran F <-> E. z e. Y ( F ` z ) = y ) ) |
| 33 |
31 32
|
syl |
|- ( F : Y --> X -> ( y e. ran F <-> E. z e. Y ( F ` z ) = y ) ) |
| 34 |
33
|
3ad2ant3 |
|- ( ( Y e. A /\ L e. ( Fil ` X ) /\ F : Y --> X ) -> ( y e. ran F <-> E. z e. Y ( F ` z ) = y ) ) |
| 35 |
34
|
ad2antrr |
|- ( ( ( ( Y e. A /\ L e. ( Fil ` X ) /\ F : Y --> X ) /\ ran F e. L ) /\ ( x e. L /\ y e. x ) ) -> ( y e. ran F <-> E. z e. Y ( F ` z ) = y ) ) |
| 36 |
|
eleq1 |
|- ( ( F ` z ) = y -> ( ( F ` z ) e. x <-> y e. x ) ) |
| 37 |
36
|
biimparc |
|- ( ( y e. x /\ ( F ` z ) = y ) -> ( F ` z ) e. x ) |
| 38 |
37
|
ad2ant2l |
|- ( ( ( x e. L /\ y e. x ) /\ ( z e. Y /\ ( F ` z ) = y ) ) -> ( F ` z ) e. x ) |
| 39 |
38
|
adantll |
|- ( ( ( ( ( Y e. A /\ L e. ( Fil ` X ) /\ F : Y --> X ) /\ ran F e. L ) /\ ( x e. L /\ y e. x ) ) /\ ( z e. Y /\ ( F ` z ) = y ) ) -> ( F ` z ) e. x ) |
| 40 |
|
ffun |
|- ( F : Y --> X -> Fun F ) |
| 41 |
40
|
3ad2ant3 |
|- ( ( Y e. A /\ L e. ( Fil ` X ) /\ F : Y --> X ) -> Fun F ) |
| 42 |
41
|
ad3antrrr |
|- ( ( ( ( ( Y e. A /\ L e. ( Fil ` X ) /\ F : Y --> X ) /\ ran F e. L ) /\ ( x e. L /\ y e. x ) ) /\ ( z e. Y /\ ( F ` z ) = y ) ) -> Fun F ) |
| 43 |
|
fdm |
|- ( F : Y --> X -> dom F = Y ) |
| 44 |
43
|
eleq2d |
|- ( F : Y --> X -> ( z e. dom F <-> z e. Y ) ) |
| 45 |
44
|
biimpar |
|- ( ( F : Y --> X /\ z e. Y ) -> z e. dom F ) |
| 46 |
45
|
3ad2antl3 |
|- ( ( ( Y e. A /\ L e. ( Fil ` X ) /\ F : Y --> X ) /\ z e. Y ) -> z e. dom F ) |
| 47 |
46
|
adantlr |
|- ( ( ( ( Y e. A /\ L e. ( Fil ` X ) /\ F : Y --> X ) /\ ran F e. L ) /\ z e. Y ) -> z e. dom F ) |
| 48 |
47
|
ad2ant2r |
|- ( ( ( ( ( Y e. A /\ L e. ( Fil ` X ) /\ F : Y --> X ) /\ ran F e. L ) /\ ( x e. L /\ y e. x ) ) /\ ( z e. Y /\ ( F ` z ) = y ) ) -> z e. dom F ) |
| 49 |
|
fvimacnv |
|- ( ( Fun F /\ z e. dom F ) -> ( ( F ` z ) e. x <-> z e. ( `' F " x ) ) ) |
| 50 |
42 48 49
|
syl2anc |
|- ( ( ( ( ( Y e. A /\ L e. ( Fil ` X ) /\ F : Y --> X ) /\ ran F e. L ) /\ ( x e. L /\ y e. x ) ) /\ ( z e. Y /\ ( F ` z ) = y ) ) -> ( ( F ` z ) e. x <-> z e. ( `' F " x ) ) ) |
| 51 |
39 50
|
mpbid |
|- ( ( ( ( ( Y e. A /\ L e. ( Fil ` X ) /\ F : Y --> X ) /\ ran F e. L ) /\ ( x e. L /\ y e. x ) ) /\ ( z e. Y /\ ( F ` z ) = y ) ) -> z e. ( `' F " x ) ) |
| 52 |
|
n0i |
|- ( z e. ( `' F " x ) -> -. ( `' F " x ) = (/) ) |
| 53 |
|
eqcom |
|- ( ( `' F " x ) = (/) <-> (/) = ( `' F " x ) ) |
| 54 |
52 53
|
sylnib |
|- ( z e. ( `' F " x ) -> -. (/) = ( `' F " x ) ) |
| 55 |
51 54
|
syl |
|- ( ( ( ( ( Y e. A /\ L e. ( Fil ` X ) /\ F : Y --> X ) /\ ran F e. L ) /\ ( x e. L /\ y e. x ) ) /\ ( z e. Y /\ ( F ` z ) = y ) ) -> -. (/) = ( `' F " x ) ) |
| 56 |
55
|
rexlimdvaa |
|- ( ( ( ( Y e. A /\ L e. ( Fil ` X ) /\ F : Y --> X ) /\ ran F e. L ) /\ ( x e. L /\ y e. x ) ) -> ( E. z e. Y ( F ` z ) = y -> -. (/) = ( `' F " x ) ) ) |
| 57 |
35 56
|
sylbid |
|- ( ( ( ( Y e. A /\ L e. ( Fil ` X ) /\ F : Y --> X ) /\ ran F e. L ) /\ ( x e. L /\ y e. x ) ) -> ( y e. ran F -> -. (/) = ( `' F " x ) ) ) |
| 58 |
57
|
con2d |
|- ( ( ( ( Y e. A /\ L e. ( Fil ` X ) /\ F : Y --> X ) /\ ran F e. L ) /\ ( x e. L /\ y e. x ) ) -> ( (/) = ( `' F " x ) -> -. y e. ran F ) ) |
| 59 |
58
|
expr |
|- ( ( ( ( Y e. A /\ L e. ( Fil ` X ) /\ F : Y --> X ) /\ ran F e. L ) /\ x e. L ) -> ( y e. x -> ( (/) = ( `' F " x ) -> -. y e. ran F ) ) ) |
| 60 |
59
|
com23 |
|- ( ( ( ( Y e. A /\ L e. ( Fil ` X ) /\ F : Y --> X ) /\ ran F e. L ) /\ x e. L ) -> ( (/) = ( `' F " x ) -> ( y e. x -> -. y e. ran F ) ) ) |
| 61 |
60
|
impr |
|- ( ( ( ( Y e. A /\ L e. ( Fil ` X ) /\ F : Y --> X ) /\ ran F e. L ) /\ ( x e. L /\ (/) = ( `' F " x ) ) ) -> ( y e. x -> -. y e. ran F ) ) |
| 62 |
61
|
alrimiv |
|- ( ( ( ( Y e. A /\ L e. ( Fil ` X ) /\ F : Y --> X ) /\ ran F e. L ) /\ ( x e. L /\ (/) = ( `' F " x ) ) ) -> A. y ( y e. x -> -. y e. ran F ) ) |
| 63 |
|
imnan |
|- ( ( y e. x -> -. y e. ran F ) <-> -. ( y e. x /\ y e. ran F ) ) |
| 64 |
|
elin |
|- ( y e. ( x i^i ran F ) <-> ( y e. x /\ y e. ran F ) ) |
| 65 |
63 64
|
xchbinxr |
|- ( ( y e. x -> -. y e. ran F ) <-> -. y e. ( x i^i ran F ) ) |
| 66 |
65
|
albii |
|- ( A. y ( y e. x -> -. y e. ran F ) <-> A. y -. y e. ( x i^i ran F ) ) |
| 67 |
|
eq0 |
|- ( ( x i^i ran F ) = (/) <-> A. y -. y e. ( x i^i ran F ) ) |
| 68 |
|
eqcom |
|- ( ( x i^i ran F ) = (/) <-> (/) = ( x i^i ran F ) ) |
| 69 |
66 67 68
|
3bitr2i |
|- ( A. y ( y e. x -> -. y e. ran F ) <-> (/) = ( x i^i ran F ) ) |
| 70 |
62 69
|
sylib |
|- ( ( ( ( Y e. A /\ L e. ( Fil ` X ) /\ F : Y --> X ) /\ ran F e. L ) /\ ( x e. L /\ (/) = ( `' F " x ) ) ) -> (/) = ( x i^i ran F ) ) |
| 71 |
|
simpll2 |
|- ( ( ( ( Y e. A /\ L e. ( Fil ` X ) /\ F : Y --> X ) /\ ran F e. L ) /\ ( x e. L /\ (/) = ( `' F " x ) ) ) -> L e. ( Fil ` X ) ) |
| 72 |
|
simprl |
|- ( ( ( ( Y e. A /\ L e. ( Fil ` X ) /\ F : Y --> X ) /\ ran F e. L ) /\ ( x e. L /\ (/) = ( `' F " x ) ) ) -> x e. L ) |
| 73 |
|
simplr |
|- ( ( ( ( Y e. A /\ L e. ( Fil ` X ) /\ F : Y --> X ) /\ ran F e. L ) /\ ( x e. L /\ (/) = ( `' F " x ) ) ) -> ran F e. L ) |
| 74 |
|
filin |
|- ( ( L e. ( Fil ` X ) /\ x e. L /\ ran F e. L ) -> ( x i^i ran F ) e. L ) |
| 75 |
71 72 73 74
|
syl3anc |
|- ( ( ( ( Y e. A /\ L e. ( Fil ` X ) /\ F : Y --> X ) /\ ran F e. L ) /\ ( x e. L /\ (/) = ( `' F " x ) ) ) -> ( x i^i ran F ) e. L ) |
| 76 |
70 75
|
eqeltrd |
|- ( ( ( ( Y e. A /\ L e. ( Fil ` X ) /\ F : Y --> X ) /\ ran F e. L ) /\ ( x e. L /\ (/) = ( `' F " x ) ) ) -> (/) e. L ) |
| 77 |
76
|
rexlimdvaa |
|- ( ( ( Y e. A /\ L e. ( Fil ` X ) /\ F : Y --> X ) /\ ran F e. L ) -> ( E. x e. L (/) = ( `' F " x ) -> (/) e. L ) ) |
| 78 |
30 77
|
biimtrid |
|- ( ( ( Y e. A /\ L e. ( Fil ` X ) /\ F : Y --> X ) /\ ran F e. L ) -> ( (/) e. ran ( x e. L |-> ( `' F " x ) ) -> (/) e. L ) ) |
| 79 |
27 78
|
mtod |
|- ( ( ( Y e. A /\ L e. ( Fil ` X ) /\ F : Y --> X ) /\ ran F e. L ) -> -. (/) e. ran ( x e. L |-> ( `' F " x ) ) ) |
| 80 |
|
df-nel |
|- ( (/) e/ ran ( x e. L |-> ( `' F " x ) ) <-> -. (/) e. ran ( x e. L |-> ( `' F " x ) ) ) |
| 81 |
79 80
|
sylibr |
|- ( ( ( Y e. A /\ L e. ( Fil ` X ) /\ F : Y --> X ) /\ ran F e. L ) -> (/) e/ ran ( x e. L |-> ( `' F " x ) ) ) |
| 82 |
19
|
elrnmpt |
|- ( r e. _V -> ( r e. ran ( x e. L |-> ( `' F " x ) ) <-> E. x e. L r = ( `' F " x ) ) ) |
| 83 |
82
|
elv |
|- ( r e. ran ( x e. L |-> ( `' F " x ) ) <-> E. x e. L r = ( `' F " x ) ) |
| 84 |
|
imaeq2 |
|- ( x = u -> ( `' F " x ) = ( `' F " u ) ) |
| 85 |
84
|
eqeq2d |
|- ( x = u -> ( r = ( `' F " x ) <-> r = ( `' F " u ) ) ) |
| 86 |
85
|
cbvrexvw |
|- ( E. x e. L r = ( `' F " x ) <-> E. u e. L r = ( `' F " u ) ) |
| 87 |
83 86
|
bitri |
|- ( r e. ran ( x e. L |-> ( `' F " x ) ) <-> E. u e. L r = ( `' F " u ) ) |
| 88 |
19
|
elrnmpt |
|- ( s e. _V -> ( s e. ran ( x e. L |-> ( `' F " x ) ) <-> E. x e. L s = ( `' F " x ) ) ) |
| 89 |
88
|
elv |
|- ( s e. ran ( x e. L |-> ( `' F " x ) ) <-> E. x e. L s = ( `' F " x ) ) |
| 90 |
|
imaeq2 |
|- ( x = v -> ( `' F " x ) = ( `' F " v ) ) |
| 91 |
90
|
eqeq2d |
|- ( x = v -> ( s = ( `' F " x ) <-> s = ( `' F " v ) ) ) |
| 92 |
91
|
cbvrexvw |
|- ( E. x e. L s = ( `' F " x ) <-> E. v e. L s = ( `' F " v ) ) |
| 93 |
89 92
|
bitri |
|- ( s e. ran ( x e. L |-> ( `' F " x ) ) <-> E. v e. L s = ( `' F " v ) ) |
| 94 |
87 93
|
anbi12i |
|- ( ( r e. ran ( x e. L |-> ( `' F " x ) ) /\ s e. ran ( x e. L |-> ( `' F " x ) ) ) <-> ( E. u e. L r = ( `' F " u ) /\ E. v e. L s = ( `' F " v ) ) ) |
| 95 |
|
reeanv |
|- ( E. u e. L E. v e. L ( r = ( `' F " u ) /\ s = ( `' F " v ) ) <-> ( E. u e. L r = ( `' F " u ) /\ E. v e. L s = ( `' F " v ) ) ) |
| 96 |
94 95
|
bitr4i |
|- ( ( r e. ran ( x e. L |-> ( `' F " x ) ) /\ s e. ran ( x e. L |-> ( `' F " x ) ) ) <-> E. u e. L E. v e. L ( r = ( `' F " u ) /\ s = ( `' F " v ) ) ) |
| 97 |
|
filin |
|- ( ( L e. ( Fil ` X ) /\ u e. L /\ v e. L ) -> ( u i^i v ) e. L ) |
| 98 |
97
|
3expb |
|- ( ( L e. ( Fil ` X ) /\ ( u e. L /\ v e. L ) ) -> ( u i^i v ) e. L ) |
| 99 |
98
|
adantlr |
|- ( ( ( L e. ( Fil ` X ) /\ F : Y --> X ) /\ ( u e. L /\ v e. L ) ) -> ( u i^i v ) e. L ) |
| 100 |
|
eqidd |
|- ( ( ( L e. ( Fil ` X ) /\ F : Y --> X ) /\ ( u e. L /\ v e. L ) ) -> ( `' F " ( u i^i v ) ) = ( `' F " ( u i^i v ) ) ) |
| 101 |
|
imaeq2 |
|- ( x = ( u i^i v ) -> ( `' F " x ) = ( `' F " ( u i^i v ) ) ) |
| 102 |
101
|
rspceeqv |
|- ( ( ( u i^i v ) e. L /\ ( `' F " ( u i^i v ) ) = ( `' F " ( u i^i v ) ) ) -> E. x e. L ( `' F " ( u i^i v ) ) = ( `' F " x ) ) |
| 103 |
99 100 102
|
syl2anc |
|- ( ( ( L e. ( Fil ` X ) /\ F : Y --> X ) /\ ( u e. L /\ v e. L ) ) -> E. x e. L ( `' F " ( u i^i v ) ) = ( `' F " x ) ) |
| 104 |
103
|
3adantl1 |
|- ( ( ( Y e. A /\ L e. ( Fil ` X ) /\ F : Y --> X ) /\ ( u e. L /\ v e. L ) ) -> E. x e. L ( `' F " ( u i^i v ) ) = ( `' F " x ) ) |
| 105 |
104
|
ad2ant2r |
|- ( ( ( ( Y e. A /\ L e. ( Fil ` X ) /\ F : Y --> X ) /\ ran F e. L ) /\ ( ( u e. L /\ v e. L ) /\ ( r = ( `' F " u ) /\ s = ( `' F " v ) ) ) ) -> E. x e. L ( `' F " ( u i^i v ) ) = ( `' F " x ) ) |
| 106 |
|
simpll1 |
|- ( ( ( ( Y e. A /\ L e. ( Fil ` X ) /\ F : Y --> X ) /\ ran F e. L ) /\ ( ( u e. L /\ v e. L ) /\ ( r = ( `' F " u ) /\ s = ( `' F " v ) ) ) ) -> Y e. A ) |
| 107 |
|
cnvimass |
|- ( `' F " ( u i^i v ) ) C_ dom F |
| 108 |
107 43
|
sseqtrid |
|- ( F : Y --> X -> ( `' F " ( u i^i v ) ) C_ Y ) |
| 109 |
108
|
3ad2ant3 |
|- ( ( Y e. A /\ L e. ( Fil ` X ) /\ F : Y --> X ) -> ( `' F " ( u i^i v ) ) C_ Y ) |
| 110 |
109
|
ad2antrr |
|- ( ( ( ( Y e. A /\ L e. ( Fil ` X ) /\ F : Y --> X ) /\ ran F e. L ) /\ ( ( u e. L /\ v e. L ) /\ ( r = ( `' F " u ) /\ s = ( `' F " v ) ) ) ) -> ( `' F " ( u i^i v ) ) C_ Y ) |
| 111 |
106 110
|
ssexd |
|- ( ( ( ( Y e. A /\ L e. ( Fil ` X ) /\ F : Y --> X ) /\ ran F e. L ) /\ ( ( u e. L /\ v e. L ) /\ ( r = ( `' F " u ) /\ s = ( `' F " v ) ) ) ) -> ( `' F " ( u i^i v ) ) e. _V ) |
| 112 |
19
|
elrnmpt |
|- ( ( `' F " ( u i^i v ) ) e. _V -> ( ( `' F " ( u i^i v ) ) e. ran ( x e. L |-> ( `' F " x ) ) <-> E. x e. L ( `' F " ( u i^i v ) ) = ( `' F " x ) ) ) |
| 113 |
111 112
|
syl |
|- ( ( ( ( Y e. A /\ L e. ( Fil ` X ) /\ F : Y --> X ) /\ ran F e. L ) /\ ( ( u e. L /\ v e. L ) /\ ( r = ( `' F " u ) /\ s = ( `' F " v ) ) ) ) -> ( ( `' F " ( u i^i v ) ) e. ran ( x e. L |-> ( `' F " x ) ) <-> E. x e. L ( `' F " ( u i^i v ) ) = ( `' F " x ) ) ) |
| 114 |
105 113
|
mpbird |
|- ( ( ( ( Y e. A /\ L e. ( Fil ` X ) /\ F : Y --> X ) /\ ran F e. L ) /\ ( ( u e. L /\ v e. L ) /\ ( r = ( `' F " u ) /\ s = ( `' F " v ) ) ) ) -> ( `' F " ( u i^i v ) ) e. ran ( x e. L |-> ( `' F " x ) ) ) |
| 115 |
|
simprrl |
|- ( ( ( ( Y e. A /\ L e. ( Fil ` X ) /\ F : Y --> X ) /\ ran F e. L ) /\ ( ( u e. L /\ v e. L ) /\ ( r = ( `' F " u ) /\ s = ( `' F " v ) ) ) ) -> r = ( `' F " u ) ) |
| 116 |
|
simprrr |
|- ( ( ( ( Y e. A /\ L e. ( Fil ` X ) /\ F : Y --> X ) /\ ran F e. L ) /\ ( ( u e. L /\ v e. L ) /\ ( r = ( `' F " u ) /\ s = ( `' F " v ) ) ) ) -> s = ( `' F " v ) ) |
| 117 |
115 116
|
ineq12d |
|- ( ( ( ( Y e. A /\ L e. ( Fil ` X ) /\ F : Y --> X ) /\ ran F e. L ) /\ ( ( u e. L /\ v e. L ) /\ ( r = ( `' F " u ) /\ s = ( `' F " v ) ) ) ) -> ( r i^i s ) = ( ( `' F " u ) i^i ( `' F " v ) ) ) |
| 118 |
|
funcnvcnv |
|- ( Fun F -> Fun `' `' F ) |
| 119 |
|
imain |
|- ( Fun `' `' F -> ( `' F " ( u i^i v ) ) = ( ( `' F " u ) i^i ( `' F " v ) ) ) |
| 120 |
40 118 119
|
3syl |
|- ( F : Y --> X -> ( `' F " ( u i^i v ) ) = ( ( `' F " u ) i^i ( `' F " v ) ) ) |
| 121 |
120
|
3ad2ant3 |
|- ( ( Y e. A /\ L e. ( Fil ` X ) /\ F : Y --> X ) -> ( `' F " ( u i^i v ) ) = ( ( `' F " u ) i^i ( `' F " v ) ) ) |
| 122 |
121
|
ad2antrr |
|- ( ( ( ( Y e. A /\ L e. ( Fil ` X ) /\ F : Y --> X ) /\ ran F e. L ) /\ ( ( u e. L /\ v e. L ) /\ ( r = ( `' F " u ) /\ s = ( `' F " v ) ) ) ) -> ( `' F " ( u i^i v ) ) = ( ( `' F " u ) i^i ( `' F " v ) ) ) |
| 123 |
117 122
|
eqtr4d |
|- ( ( ( ( Y e. A /\ L e. ( Fil ` X ) /\ F : Y --> X ) /\ ran F e. L ) /\ ( ( u e. L /\ v e. L ) /\ ( r = ( `' F " u ) /\ s = ( `' F " v ) ) ) ) -> ( r i^i s ) = ( `' F " ( u i^i v ) ) ) |
| 124 |
|
eqimss2 |
|- ( ( r i^i s ) = ( `' F " ( u i^i v ) ) -> ( `' F " ( u i^i v ) ) C_ ( r i^i s ) ) |
| 125 |
123 124
|
syl |
|- ( ( ( ( Y e. A /\ L e. ( Fil ` X ) /\ F : Y --> X ) /\ ran F e. L ) /\ ( ( u e. L /\ v e. L ) /\ ( r = ( `' F " u ) /\ s = ( `' F " v ) ) ) ) -> ( `' F " ( u i^i v ) ) C_ ( r i^i s ) ) |
| 126 |
|
sseq1 |
|- ( t = ( `' F " ( u i^i v ) ) -> ( t C_ ( r i^i s ) <-> ( `' F " ( u i^i v ) ) C_ ( r i^i s ) ) ) |
| 127 |
126
|
rspcev |
|- ( ( ( `' F " ( u i^i v ) ) e. ran ( x e. L |-> ( `' F " x ) ) /\ ( `' F " ( u i^i v ) ) C_ ( r i^i s ) ) -> E. t e. ran ( x e. L |-> ( `' F " x ) ) t C_ ( r i^i s ) ) |
| 128 |
114 125 127
|
syl2anc |
|- ( ( ( ( Y e. A /\ L e. ( Fil ` X ) /\ F : Y --> X ) /\ ran F e. L ) /\ ( ( u e. L /\ v e. L ) /\ ( r = ( `' F " u ) /\ s = ( `' F " v ) ) ) ) -> E. t e. ran ( x e. L |-> ( `' F " x ) ) t C_ ( r i^i s ) ) |
| 129 |
128
|
exp32 |
|- ( ( ( Y e. A /\ L e. ( Fil ` X ) /\ F : Y --> X ) /\ ran F e. L ) -> ( ( u e. L /\ v e. L ) -> ( ( r = ( `' F " u ) /\ s = ( `' F " v ) ) -> E. t e. ran ( x e. L |-> ( `' F " x ) ) t C_ ( r i^i s ) ) ) ) |
| 130 |
129
|
rexlimdvv |
|- ( ( ( Y e. A /\ L e. ( Fil ` X ) /\ F : Y --> X ) /\ ran F e. L ) -> ( E. u e. L E. v e. L ( r = ( `' F " u ) /\ s = ( `' F " v ) ) -> E. t e. ran ( x e. L |-> ( `' F " x ) ) t C_ ( r i^i s ) ) ) |
| 131 |
96 130
|
biimtrid |
|- ( ( ( Y e. A /\ L e. ( Fil ` X ) /\ F : Y --> X ) /\ ran F e. L ) -> ( ( r e. ran ( x e. L |-> ( `' F " x ) ) /\ s e. ran ( x e. L |-> ( `' F " x ) ) ) -> E. t e. ran ( x e. L |-> ( `' F " x ) ) t C_ ( r i^i s ) ) ) |
| 132 |
131
|
ralrimivv |
|- ( ( ( Y e. A /\ L e. ( Fil ` X ) /\ F : Y --> X ) /\ ran F e. L ) -> A. r e. ran ( x e. L |-> ( `' F " x ) ) A. s e. ran ( x e. L |-> ( `' F " x ) ) E. t e. ran ( x e. L |-> ( `' F " x ) ) t C_ ( r i^i s ) ) |
| 133 |
24 81 132
|
3jca |
|- ( ( ( Y e. A /\ L e. ( Fil ` X ) /\ F : Y --> X ) /\ ran F e. L ) -> ( ran ( x e. L |-> ( `' F " x ) ) =/= (/) /\ (/) e/ ran ( x e. L |-> ( `' F " x ) ) /\ A. r e. ran ( x e. L |-> ( `' F " x ) ) A. s e. ran ( x e. L |-> ( `' F " x ) ) E. t e. ran ( x e. L |-> ( `' F " x ) ) t C_ ( r i^i s ) ) ) |
| 134 |
|
isfbas2 |
|- ( Y e. A -> ( ran ( x e. L |-> ( `' F " x ) ) e. ( fBas ` Y ) <-> ( ran ( x e. L |-> ( `' F " x ) ) C_ ~P Y /\ ( ran ( x e. L |-> ( `' F " x ) ) =/= (/) /\ (/) e/ ran ( x e. L |-> ( `' F " x ) ) /\ A. r e. ran ( x e. L |-> ( `' F " x ) ) A. s e. ran ( x e. L |-> ( `' F " x ) ) E. t e. ran ( x e. L |-> ( `' F " x ) ) t C_ ( r i^i s ) ) ) ) ) |
| 135 |
1 134
|
syl |
|- ( ( ( Y e. A /\ L e. ( Fil ` X ) /\ F : Y --> X ) /\ ran F e. L ) -> ( ran ( x e. L |-> ( `' F " x ) ) e. ( fBas ` Y ) <-> ( ran ( x e. L |-> ( `' F " x ) ) C_ ~P Y /\ ( ran ( x e. L |-> ( `' F " x ) ) =/= (/) /\ (/) e/ ran ( x e. L |-> ( `' F " x ) ) /\ A. r e. ran ( x e. L |-> ( `' F " x ) ) A. s e. ran ( x e. L |-> ( `' F " x ) ) E. t e. ran ( x e. L |-> ( `' F " x ) ) t C_ ( r i^i s ) ) ) ) ) |
| 136 |
8 133 135
|
mpbir2and |
|- ( ( ( Y e. A /\ L e. ( Fil ` X ) /\ F : Y --> X ) /\ ran F e. L ) -> ran ( x e. L |-> ( `' F " x ) ) e. ( fBas ` Y ) ) |