| Step |
Hyp |
Ref |
Expression |
| 1 |
|
simpl1 |
|
| 2 |
|
cnvimass |
|
| 3 |
|
simpl3 |
|
| 4 |
2 3
|
fssdm |
|
| 5 |
1 4
|
sselpwd |
|
| 6 |
5
|
adantr |
|
| 7 |
6
|
fmpttd |
|
| 8 |
7
|
frnd |
|
| 9 |
|
filtop |
|
| 10 |
9
|
3ad2ant2 |
|
| 11 |
10
|
adantr |
|
| 12 |
|
fimacnv |
|
| 13 |
12
|
eqcomd |
|
| 14 |
13
|
3ad2ant3 |
|
| 15 |
14
|
adantr |
|
| 16 |
|
imaeq2 |
|
| 17 |
16
|
rspceeqv |
|
| 18 |
11 15 17
|
syl2anc |
|
| 19 |
|
eqid |
|
| 20 |
19
|
elrnmpt |
|
| 21 |
20
|
3ad2ant1 |
|
| 22 |
21
|
adantr |
|
| 23 |
18 22
|
mpbird |
|
| 24 |
23
|
ne0d |
|
| 25 |
|
0nelfil |
|
| 26 |
25
|
3ad2ant2 |
|
| 27 |
26
|
adantr |
|
| 28 |
|
0ex |
|
| 29 |
19
|
elrnmpt |
|
| 30 |
28 29
|
ax-mp |
|
| 31 |
|
ffn |
|
| 32 |
|
fvelrnb |
|
| 33 |
31 32
|
syl |
|
| 34 |
33
|
3ad2ant3 |
|
| 35 |
34
|
ad2antrr |
|
| 36 |
|
eleq1 |
|
| 37 |
36
|
biimparc |
|
| 38 |
37
|
ad2ant2l |
|
| 39 |
38
|
adantll |
|
| 40 |
|
ffun |
|
| 41 |
40
|
3ad2ant3 |
|
| 42 |
41
|
ad3antrrr |
|
| 43 |
|
fdm |
|
| 44 |
43
|
eleq2d |
|
| 45 |
44
|
biimpar |
|
| 46 |
45
|
3ad2antl3 |
|
| 47 |
46
|
adantlr |
|
| 48 |
47
|
ad2ant2r |
|
| 49 |
|
fvimacnv |
|
| 50 |
42 48 49
|
syl2anc |
|
| 51 |
39 50
|
mpbid |
|
| 52 |
|
n0i |
|
| 53 |
|
eqcom |
|
| 54 |
52 53
|
sylnib |
|
| 55 |
51 54
|
syl |
|
| 56 |
55
|
rexlimdvaa |
|
| 57 |
35 56
|
sylbid |
|
| 58 |
57
|
con2d |
|
| 59 |
58
|
expr |
|
| 60 |
59
|
com23 |
|
| 61 |
60
|
impr |
|
| 62 |
61
|
alrimiv |
|
| 63 |
|
imnan |
|
| 64 |
|
elin |
|
| 65 |
63 64
|
xchbinxr |
|
| 66 |
65
|
albii |
|
| 67 |
|
eq0 |
|
| 68 |
|
eqcom |
|
| 69 |
66 67 68
|
3bitr2i |
|
| 70 |
62 69
|
sylib |
|
| 71 |
|
simpll2 |
|
| 72 |
|
simprl |
|
| 73 |
|
simplr |
|
| 74 |
|
filin |
|
| 75 |
71 72 73 74
|
syl3anc |
|
| 76 |
70 75
|
eqeltrd |
|
| 77 |
76
|
rexlimdvaa |
|
| 78 |
30 77
|
biimtrid |
|
| 79 |
27 78
|
mtod |
|
| 80 |
|
df-nel |
|
| 81 |
79 80
|
sylibr |
|
| 82 |
19
|
elrnmpt |
|
| 83 |
82
|
elv |
|
| 84 |
|
imaeq2 |
|
| 85 |
84
|
eqeq2d |
|
| 86 |
85
|
cbvrexvw |
|
| 87 |
83 86
|
bitri |
|
| 88 |
19
|
elrnmpt |
|
| 89 |
88
|
elv |
|
| 90 |
|
imaeq2 |
|
| 91 |
90
|
eqeq2d |
|
| 92 |
91
|
cbvrexvw |
|
| 93 |
89 92
|
bitri |
|
| 94 |
87 93
|
anbi12i |
|
| 95 |
|
reeanv |
|
| 96 |
94 95
|
bitr4i |
|
| 97 |
|
filin |
|
| 98 |
97
|
3expb |
|
| 99 |
98
|
adantlr |
|
| 100 |
|
eqidd |
|
| 101 |
|
imaeq2 |
|
| 102 |
101
|
rspceeqv |
|
| 103 |
99 100 102
|
syl2anc |
|
| 104 |
103
|
3adantl1 |
|
| 105 |
104
|
ad2ant2r |
|
| 106 |
|
simpll1 |
|
| 107 |
|
cnvimass |
|
| 108 |
107 43
|
sseqtrid |
|
| 109 |
108
|
3ad2ant3 |
|
| 110 |
109
|
ad2antrr |
|
| 111 |
106 110
|
ssexd |
|
| 112 |
19
|
elrnmpt |
|
| 113 |
111 112
|
syl |
|
| 114 |
105 113
|
mpbird |
|
| 115 |
|
simprrl |
|
| 116 |
|
simprrr |
|
| 117 |
115 116
|
ineq12d |
|
| 118 |
|
funcnvcnv |
|
| 119 |
|
imain |
|
| 120 |
40 118 119
|
3syl |
|
| 121 |
120
|
3ad2ant3 |
|
| 122 |
121
|
ad2antrr |
|
| 123 |
117 122
|
eqtr4d |
|
| 124 |
|
eqimss2 |
|
| 125 |
123 124
|
syl |
|
| 126 |
|
sseq1 |
|
| 127 |
126
|
rspcev |
|
| 128 |
114 125 127
|
syl2anc |
|
| 129 |
128
|
exp32 |
|
| 130 |
129
|
rexlimdvv |
|
| 131 |
96 130
|
biimtrid |
|
| 132 |
131
|
ralrimivv |
|
| 133 |
24 81 132
|
3jca |
|
| 134 |
|
isfbas2 |
|
| 135 |
1 134
|
syl |
|
| 136 |
8 133 135
|
mpbir2and |
|