Step |
Hyp |
Ref |
Expression |
1 |
|
ax7 |
⊢ ( 𝑥 = 𝑦 → ( 𝑥 = 𝑤 → 𝑦 = 𝑤 ) ) |
2 |
|
ax12v2 |
⊢ ( 𝑥 = 𝑤 → ( ( 𝑥 ∈ 𝑡 ∧ 𝑥 ∈ 𝑡 ) → ∀ 𝑥 ( 𝑥 = 𝑤 → ( 𝑥 ∈ 𝑡 ∧ 𝑥 ∈ 𝑡 ) ) ) ) |
3 |
2
|
imp |
⊢ ( ( 𝑥 = 𝑤 ∧ ( 𝑥 ∈ 𝑡 ∧ 𝑥 ∈ 𝑡 ) ) → ∀ 𝑥 ( 𝑥 = 𝑤 → ( 𝑥 ∈ 𝑡 ∧ 𝑥 ∈ 𝑡 ) ) ) |
4 |
|
sb6 |
⊢ ( [ 𝑤 / 𝑥 ] ( 𝑥 ∈ 𝑡 ∧ 𝑥 ∈ 𝑡 ) ↔ ∀ 𝑥 ( 𝑥 = 𝑤 → ( 𝑥 ∈ 𝑡 ∧ 𝑥 ∈ 𝑡 ) ) ) |
5 |
|
df-in |
⊢ ( 𝑡 ∩ 𝑡 ) = { 𝑥 ∣ ( 𝑥 ∈ 𝑡 ∧ 𝑥 ∈ 𝑡 ) } |
6 |
|
df-in |
⊢ ( 𝑡 ∩ 𝑡 ) = { 𝑦 ∣ ( 𝑦 ∈ 𝑡 ∧ 𝑦 ∈ 𝑡 ) } |
7 |
5 6
|
eqtr3i |
⊢ { 𝑥 ∣ ( 𝑥 ∈ 𝑡 ∧ 𝑥 ∈ 𝑡 ) } = { 𝑦 ∣ ( 𝑦 ∈ 𝑡 ∧ 𝑦 ∈ 𝑡 ) } |
8 |
|
dfcleq |
⊢ ( { 𝑥 ∣ ( 𝑥 ∈ 𝑡 ∧ 𝑥 ∈ 𝑡 ) } = { 𝑦 ∣ ( 𝑦 ∈ 𝑡 ∧ 𝑦 ∈ 𝑡 ) } ↔ ∀ 𝑤 ( 𝑤 ∈ { 𝑥 ∣ ( 𝑥 ∈ 𝑡 ∧ 𝑥 ∈ 𝑡 ) } ↔ 𝑤 ∈ { 𝑦 ∣ ( 𝑦 ∈ 𝑡 ∧ 𝑦 ∈ 𝑡 ) } ) ) |
9 |
7 8
|
mpbi |
⊢ ∀ 𝑤 ( 𝑤 ∈ { 𝑥 ∣ ( 𝑥 ∈ 𝑡 ∧ 𝑥 ∈ 𝑡 ) } ↔ 𝑤 ∈ { 𝑦 ∣ ( 𝑦 ∈ 𝑡 ∧ 𝑦 ∈ 𝑡 ) } ) |
10 |
9
|
spi |
⊢ ( 𝑤 ∈ { 𝑥 ∣ ( 𝑥 ∈ 𝑡 ∧ 𝑥 ∈ 𝑡 ) } ↔ 𝑤 ∈ { 𝑦 ∣ ( 𝑦 ∈ 𝑡 ∧ 𝑦 ∈ 𝑡 ) } ) |
11 |
|
df-clab |
⊢ ( 𝑤 ∈ { 𝑥 ∣ ( 𝑥 ∈ 𝑡 ∧ 𝑥 ∈ 𝑡 ) } ↔ [ 𝑤 / 𝑥 ] ( 𝑥 ∈ 𝑡 ∧ 𝑥 ∈ 𝑡 ) ) |
12 |
|
df-clab |
⊢ ( 𝑤 ∈ { 𝑦 ∣ ( 𝑦 ∈ 𝑡 ∧ 𝑦 ∈ 𝑡 ) } ↔ [ 𝑤 / 𝑦 ] ( 𝑦 ∈ 𝑡 ∧ 𝑦 ∈ 𝑡 ) ) |
13 |
10 11 12
|
3bitr3i |
⊢ ( [ 𝑤 / 𝑥 ] ( 𝑥 ∈ 𝑡 ∧ 𝑥 ∈ 𝑡 ) ↔ [ 𝑤 / 𝑦 ] ( 𝑦 ∈ 𝑡 ∧ 𝑦 ∈ 𝑡 ) ) |
14 |
4 13
|
bitr3i |
⊢ ( ∀ 𝑥 ( 𝑥 = 𝑤 → ( 𝑥 ∈ 𝑡 ∧ 𝑥 ∈ 𝑡 ) ) ↔ [ 𝑤 / 𝑦 ] ( 𝑦 ∈ 𝑡 ∧ 𝑦 ∈ 𝑡 ) ) |
15 |
|
sb6 |
⊢ ( [ 𝑤 / 𝑦 ] ( 𝑦 ∈ 𝑡 ∧ 𝑦 ∈ 𝑡 ) ↔ ∀ 𝑦 ( 𝑦 = 𝑤 → ( 𝑦 ∈ 𝑡 ∧ 𝑦 ∈ 𝑡 ) ) ) |
16 |
14 15
|
sylbb |
⊢ ( ∀ 𝑥 ( 𝑥 = 𝑤 → ( 𝑥 ∈ 𝑡 ∧ 𝑥 ∈ 𝑡 ) ) → ∀ 𝑦 ( 𝑦 = 𝑤 → ( 𝑦 ∈ 𝑡 ∧ 𝑦 ∈ 𝑡 ) ) ) |
17 |
|
sp |
⊢ ( ∀ 𝑦 ( 𝑦 = 𝑤 → ( 𝑦 ∈ 𝑡 ∧ 𝑦 ∈ 𝑡 ) ) → ( 𝑦 = 𝑤 → ( 𝑦 ∈ 𝑡 ∧ 𝑦 ∈ 𝑡 ) ) ) |
18 |
3 16 17
|
3syl |
⊢ ( ( 𝑥 = 𝑤 ∧ ( 𝑥 ∈ 𝑡 ∧ 𝑥 ∈ 𝑡 ) ) → ( 𝑦 = 𝑤 → ( 𝑦 ∈ 𝑡 ∧ 𝑦 ∈ 𝑡 ) ) ) |
19 |
18
|
ex |
⊢ ( 𝑥 = 𝑤 → ( ( 𝑥 ∈ 𝑡 ∧ 𝑥 ∈ 𝑡 ) → ( 𝑦 = 𝑤 → ( 𝑦 ∈ 𝑡 ∧ 𝑦 ∈ 𝑡 ) ) ) ) |
20 |
19
|
com23 |
⊢ ( 𝑥 = 𝑤 → ( 𝑦 = 𝑤 → ( ( 𝑥 ∈ 𝑡 ∧ 𝑥 ∈ 𝑡 ) → ( 𝑦 ∈ 𝑡 ∧ 𝑦 ∈ 𝑡 ) ) ) ) |
21 |
1 20
|
sylcom |
⊢ ( 𝑥 = 𝑦 → ( 𝑥 = 𝑤 → ( ( 𝑥 ∈ 𝑡 ∧ 𝑥 ∈ 𝑡 ) → ( 𝑦 ∈ 𝑡 ∧ 𝑦 ∈ 𝑡 ) ) ) ) |
22 |
21
|
com12 |
⊢ ( 𝑥 = 𝑤 → ( 𝑥 = 𝑦 → ( ( 𝑥 ∈ 𝑡 ∧ 𝑥 ∈ 𝑡 ) → ( 𝑦 ∈ 𝑡 ∧ 𝑦 ∈ 𝑡 ) ) ) ) |
23 |
22
|
equcoms |
⊢ ( 𝑤 = 𝑥 → ( 𝑥 = 𝑦 → ( ( 𝑥 ∈ 𝑡 ∧ 𝑥 ∈ 𝑡 ) → ( 𝑦 ∈ 𝑡 ∧ 𝑦 ∈ 𝑡 ) ) ) ) |
24 |
|
ax6ev |
⊢ ∃ 𝑤 𝑤 = 𝑥 |
25 |
23 24
|
exlimiiv |
⊢ ( 𝑥 = 𝑦 → ( ( 𝑥 ∈ 𝑡 ∧ 𝑥 ∈ 𝑡 ) → ( 𝑦 ∈ 𝑡 ∧ 𝑦 ∈ 𝑡 ) ) ) |
26 |
|
pm4.24 |
⊢ ( 𝑥 ∈ 𝑡 ↔ ( 𝑥 ∈ 𝑡 ∧ 𝑥 ∈ 𝑡 ) ) |
27 |
|
pm4.24 |
⊢ ( 𝑦 ∈ 𝑡 ↔ ( 𝑦 ∈ 𝑡 ∧ 𝑦 ∈ 𝑡 ) ) |
28 |
25 26 27
|
3imtr4g |
⊢ ( 𝑥 = 𝑦 → ( 𝑥 ∈ 𝑡 → 𝑦 ∈ 𝑡 ) ) |
29 |
|
ax9 |
⊢ ( 𝑧 = 𝑡 → ( 𝑥 ∈ 𝑧 → 𝑥 ∈ 𝑡 ) ) |
30 |
29
|
equcoms |
⊢ ( 𝑡 = 𝑧 → ( 𝑥 ∈ 𝑧 → 𝑥 ∈ 𝑡 ) ) |
31 |
|
ax9 |
⊢ ( 𝑡 = 𝑧 → ( 𝑦 ∈ 𝑡 → 𝑦 ∈ 𝑧 ) ) |
32 |
30 31
|
imim12d |
⊢ ( 𝑡 = 𝑧 → ( ( 𝑥 ∈ 𝑡 → 𝑦 ∈ 𝑡 ) → ( 𝑥 ∈ 𝑧 → 𝑦 ∈ 𝑧 ) ) ) |
33 |
28 32
|
syl5 |
⊢ ( 𝑡 = 𝑧 → ( 𝑥 = 𝑦 → ( 𝑥 ∈ 𝑧 → 𝑦 ∈ 𝑧 ) ) ) |
34 |
|
ax6ev |
⊢ ∃ 𝑡 𝑡 = 𝑧 |
35 |
33 34
|
exlimiiv |
⊢ ( 𝑥 = 𝑦 → ( 𝑥 ∈ 𝑧 → 𝑦 ∈ 𝑧 ) ) |