Metamath Proof Explorer


Theorem in-ax8

Description: A proof of ax-8 that does not rely on ax-8 . It employs df-in to perform alpha-renaming and eliminates disjoint variable conditions using ax-9 . Since the nature of this result is unclear, usage of this theorem is discouraged, and this method should not be applied to eliminate axiom dependencies. (Contributed by GG, 1-Aug-2025) (Proof modification is discouraged.) (New usage is discouraged.)

Ref Expression
Assertion in-ax8 x = y x z y z

Proof

Step Hyp Ref Expression
1 ax7 x = y x = w y = w
2 ax12v2 x = w x t x t x x = w x t x t
3 2 imp x = w x t x t x x = w x t x t
4 sb6 w x x t x t x x = w x t x t
5 df-in t t = x | x t x t
6 df-in t t = y | y t y t
7 5 6 eqtr3i x | x t x t = y | y t y t
8 dfcleq x | x t x t = y | y t y t w w x | x t x t w y | y t y t
9 7 8 mpbi w w x | x t x t w y | y t y t
10 9 spi w x | x t x t w y | y t y t
11 df-clab w x | x t x t w x x t x t
12 df-clab w y | y t y t w y y t y t
13 10 11 12 3bitr3i w x x t x t w y y t y t
14 4 13 bitr3i x x = w x t x t w y y t y t
15 sb6 w y y t y t y y = w y t y t
16 14 15 sylbb x x = w x t x t y y = w y t y t
17 sp y y = w y t y t y = w y t y t
18 3 16 17 3syl x = w x t x t y = w y t y t
19 18 ex x = w x t x t y = w y t y t
20 19 com23 x = w y = w x t x t y t y t
21 1 20 sylcom x = y x = w x t x t y t y t
22 21 com12 x = w x = y x t x t y t y t
23 22 equcoms w = x x = y x t x t y t y t
24 ax6ev w w = x
25 23 24 exlimiiv x = y x t x t y t y t
26 pm4.24 x t x t x t
27 pm4.24 y t y t y t
28 25 26 27 3imtr4g x = y x t y t
29 ax9 z = t x z x t
30 29 equcoms t = z x z x t
31 ax9 t = z y t y z
32 30 31 imim12d t = z x t y t x z y z
33 28 32 syl5 t = z x = y x z y z
34 ax6ev t t = z
35 33 34 exlimiiv x = y x z y z