Metamath Proof Explorer


Theorem ss-ax8

Description: A proof of ax-8 that does not rely on ax-8 . It employs df-ss to perform alpha-renaming and eliminates disjoint variable conditions using ax-9 . Contrary to in-ax8 , this proof does not rely on df-cleq , therefore using fewer axioms . This method should not be applied to eliminate axiom dependencies. (Contributed by GG, 30-Aug-2025) (Proof modification is discouraged.) (New usage is discouraged.)

Ref Expression
Assertion ss-ax8 x = y x z y z

Proof

Step Hyp Ref Expression
1 ax7 x = y x = w y = w
2 ax12v2 x = w x t x x = w x t
3 2 imp x = w x t x x = w x t
4 equsb3 x v v = w x = w
5 4 bicomi x = w x v v = w
6 5 imbi1i x = w x t x v v = w x t
7 6 albii x x = w x t x x v v = w x t
8 df-clab x v | v = w x v v = w
9 8 bicomi x v v = w x v | v = w
10 9 imbi1i x v v = w x t x v | v = w x t
11 10 albii x x v v = w x t x x v | v = w x t
12 df-ss v | v = w t x x v | v = w x t
13 df-ss v | v = w t y y v | v = w y t
14 12 13 bitr3i x x v | v = w x t y y v | v = w y t
15 df-clab y v | v = w y v v = w
16 15 imbi1i y v | v = w y t y v v = w y t
17 16 albii y y v | v = w y t y y v v = w y t
18 11 14 17 3bitri x x v v = w x t y y v v = w y t
19 equsb3 y v v = w y = w
20 19 imbi1i y v v = w y t y = w y t
21 20 albii y y v v = w y t y y = w y t
22 7 18 21 3bitri x x = w x t y y = w y t
23 22 biimpi x x = w x t y y = w y t
24 sp y y = w y t y = w y t
25 3 23 24 3syl x = w x t y = w y t
26 25 ex x = w x t y = w y t
27 26 com23 x = w y = w x t y t
28 1 27 sylcom x = y x = w x t y t
29 28 com12 x = w x = y x t y t
30 29 equcoms w = x x = y x t y t
31 ax6ev w w = x
32 30 31 exlimiiv x = y x t y t
33 ax9 z = t x z x t
34 33 equcoms t = z x z x t
35 ax9 t = z y t y z
36 34 35 imim12d t = z x t y t x z y z
37 32 36 syl5 t = z x = y x z y z
38 ax6ev t t = z
39 37 38 exlimiiv x = y x z y z