Metamath Proof Explorer


Theorem ss-ax8

Description: A proof of ax-8 that does not rely on ax-8 . It employs df-ss to perform alpha-renaming and eliminates disjoint variable conditions using ax-9 . Contrary to in-ax8 , this proof does not rely on df-cleq , therefore using fewer axioms . This method should not be applied to eliminate axiom dependencies. (Contributed by GG, 30-Aug-2025) (Proof modification is discouraged.) (New usage is discouraged.)

Ref Expression
Assertion ss-ax8
|- ( x = y -> ( x e. z -> y e. z ) )

Proof

Step Hyp Ref Expression
1 ax7
 |-  ( x = y -> ( x = w -> y = w ) )
2 ax12v2
 |-  ( x = w -> ( x e. t -> A. x ( x = w -> x e. t ) ) )
3 2 imp
 |-  ( ( x = w /\ x e. t ) -> A. x ( x = w -> x e. t ) )
4 equsb3
 |-  ( [ x / v ] v = w <-> x = w )
5 4 bicomi
 |-  ( x = w <-> [ x / v ] v = w )
6 5 imbi1i
 |-  ( ( x = w -> x e. t ) <-> ( [ x / v ] v = w -> x e. t ) )
7 6 albii
 |-  ( A. x ( x = w -> x e. t ) <-> A. x ( [ x / v ] v = w -> x e. t ) )
8 df-clab
 |-  ( x e. { v | v = w } <-> [ x / v ] v = w )
9 8 bicomi
 |-  ( [ x / v ] v = w <-> x e. { v | v = w } )
10 9 imbi1i
 |-  ( ( [ x / v ] v = w -> x e. t ) <-> ( x e. { v | v = w } -> x e. t ) )
11 10 albii
 |-  ( A. x ( [ x / v ] v = w -> x e. t ) <-> A. x ( x e. { v | v = w } -> x e. t ) )
12 df-ss
 |-  ( { v | v = w } C_ t <-> A. x ( x e. { v | v = w } -> x e. t ) )
13 df-ss
 |-  ( { v | v = w } C_ t <-> A. y ( y e. { v | v = w } -> y e. t ) )
14 12 13 bitr3i
 |-  ( A. x ( x e. { v | v = w } -> x e. t ) <-> A. y ( y e. { v | v = w } -> y e. t ) )
15 df-clab
 |-  ( y e. { v | v = w } <-> [ y / v ] v = w )
16 15 imbi1i
 |-  ( ( y e. { v | v = w } -> y e. t ) <-> ( [ y / v ] v = w -> y e. t ) )
17 16 albii
 |-  ( A. y ( y e. { v | v = w } -> y e. t ) <-> A. y ( [ y / v ] v = w -> y e. t ) )
18 11 14 17 3bitri
 |-  ( A. x ( [ x / v ] v = w -> x e. t ) <-> A. y ( [ y / v ] v = w -> y e. t ) )
19 equsb3
 |-  ( [ y / v ] v = w <-> y = w )
20 19 imbi1i
 |-  ( ( [ y / v ] v = w -> y e. t ) <-> ( y = w -> y e. t ) )
21 20 albii
 |-  ( A. y ( [ y / v ] v = w -> y e. t ) <-> A. y ( y = w -> y e. t ) )
22 7 18 21 3bitri
 |-  ( A. x ( x = w -> x e. t ) <-> A. y ( y = w -> y e. t ) )
23 22 biimpi
 |-  ( A. x ( x = w -> x e. t ) -> A. y ( y = w -> y e. t ) )
24 sp
 |-  ( A. y ( y = w -> y e. t ) -> ( y = w -> y e. t ) )
25 3 23 24 3syl
 |-  ( ( x = w /\ x e. t ) -> ( y = w -> y e. t ) )
26 25 ex
 |-  ( x = w -> ( x e. t -> ( y = w -> y e. t ) ) )
27 26 com23
 |-  ( x = w -> ( y = w -> ( x e. t -> y e. t ) ) )
28 1 27 sylcom
 |-  ( x = y -> ( x = w -> ( x e. t -> y e. t ) ) )
29 28 com12
 |-  ( x = w -> ( x = y -> ( x e. t -> y e. t ) ) )
30 29 equcoms
 |-  ( w = x -> ( x = y -> ( x e. t -> y e. t ) ) )
31 ax6ev
 |-  E. w w = x
32 30 31 exlimiiv
 |-  ( x = y -> ( x e. t -> y e. t ) )
33 ax9
 |-  ( z = t -> ( x e. z -> x e. t ) )
34 33 equcoms
 |-  ( t = z -> ( x e. z -> x e. t ) )
35 ax9
 |-  ( t = z -> ( y e. t -> y e. z ) )
36 34 35 imim12d
 |-  ( t = z -> ( ( x e. t -> y e. t ) -> ( x e. z -> y e. z ) ) )
37 32 36 syl5
 |-  ( t = z -> ( x = y -> ( x e. z -> y e. z ) ) )
38 ax6ev
 |-  E. t t = z
39 37 38 exlimiiv
 |-  ( x = y -> ( x e. z -> y e. z ) )