Step |
Hyp |
Ref |
Expression |
1 |
|
ax7 |
|- ( x = y -> ( x = w -> y = w ) ) |
2 |
|
ax12v2 |
|- ( x = w -> ( x e. t -> A. x ( x = w -> x e. t ) ) ) |
3 |
2
|
imp |
|- ( ( x = w /\ x e. t ) -> A. x ( x = w -> x e. t ) ) |
4 |
|
equsb3 |
|- ( [ x / v ] v = w <-> x = w ) |
5 |
4
|
bicomi |
|- ( x = w <-> [ x / v ] v = w ) |
6 |
5
|
imbi1i |
|- ( ( x = w -> x e. t ) <-> ( [ x / v ] v = w -> x e. t ) ) |
7 |
6
|
albii |
|- ( A. x ( x = w -> x e. t ) <-> A. x ( [ x / v ] v = w -> x e. t ) ) |
8 |
|
df-clab |
|- ( x e. { v | v = w } <-> [ x / v ] v = w ) |
9 |
8
|
bicomi |
|- ( [ x / v ] v = w <-> x e. { v | v = w } ) |
10 |
9
|
imbi1i |
|- ( ( [ x / v ] v = w -> x e. t ) <-> ( x e. { v | v = w } -> x e. t ) ) |
11 |
10
|
albii |
|- ( A. x ( [ x / v ] v = w -> x e. t ) <-> A. x ( x e. { v | v = w } -> x e. t ) ) |
12 |
|
df-ss |
|- ( { v | v = w } C_ t <-> A. x ( x e. { v | v = w } -> x e. t ) ) |
13 |
|
df-ss |
|- ( { v | v = w } C_ t <-> A. y ( y e. { v | v = w } -> y e. t ) ) |
14 |
12 13
|
bitr3i |
|- ( A. x ( x e. { v | v = w } -> x e. t ) <-> A. y ( y e. { v | v = w } -> y e. t ) ) |
15 |
|
df-clab |
|- ( y e. { v | v = w } <-> [ y / v ] v = w ) |
16 |
15
|
imbi1i |
|- ( ( y e. { v | v = w } -> y e. t ) <-> ( [ y / v ] v = w -> y e. t ) ) |
17 |
16
|
albii |
|- ( A. y ( y e. { v | v = w } -> y e. t ) <-> A. y ( [ y / v ] v = w -> y e. t ) ) |
18 |
11 14 17
|
3bitri |
|- ( A. x ( [ x / v ] v = w -> x e. t ) <-> A. y ( [ y / v ] v = w -> y e. t ) ) |
19 |
|
equsb3 |
|- ( [ y / v ] v = w <-> y = w ) |
20 |
19
|
imbi1i |
|- ( ( [ y / v ] v = w -> y e. t ) <-> ( y = w -> y e. t ) ) |
21 |
20
|
albii |
|- ( A. y ( [ y / v ] v = w -> y e. t ) <-> A. y ( y = w -> y e. t ) ) |
22 |
7 18 21
|
3bitri |
|- ( A. x ( x = w -> x e. t ) <-> A. y ( y = w -> y e. t ) ) |
23 |
22
|
biimpi |
|- ( A. x ( x = w -> x e. t ) -> A. y ( y = w -> y e. t ) ) |
24 |
|
sp |
|- ( A. y ( y = w -> y e. t ) -> ( y = w -> y e. t ) ) |
25 |
3 23 24
|
3syl |
|- ( ( x = w /\ x e. t ) -> ( y = w -> y e. t ) ) |
26 |
25
|
ex |
|- ( x = w -> ( x e. t -> ( y = w -> y e. t ) ) ) |
27 |
26
|
com23 |
|- ( x = w -> ( y = w -> ( x e. t -> y e. t ) ) ) |
28 |
1 27
|
sylcom |
|- ( x = y -> ( x = w -> ( x e. t -> y e. t ) ) ) |
29 |
28
|
com12 |
|- ( x = w -> ( x = y -> ( x e. t -> y e. t ) ) ) |
30 |
29
|
equcoms |
|- ( w = x -> ( x = y -> ( x e. t -> y e. t ) ) ) |
31 |
|
ax6ev |
|- E. w w = x |
32 |
30 31
|
exlimiiv |
|- ( x = y -> ( x e. t -> y e. t ) ) |
33 |
|
ax9 |
|- ( z = t -> ( x e. z -> x e. t ) ) |
34 |
33
|
equcoms |
|- ( t = z -> ( x e. z -> x e. t ) ) |
35 |
|
ax9 |
|- ( t = z -> ( y e. t -> y e. z ) ) |
36 |
34 35
|
imim12d |
|- ( t = z -> ( ( x e. t -> y e. t ) -> ( x e. z -> y e. z ) ) ) |
37 |
32 36
|
syl5 |
|- ( t = z -> ( x = y -> ( x e. z -> y e. z ) ) ) |
38 |
|
ax6ev |
|- E. t t = z |
39 |
37 38
|
exlimiiv |
|- ( x = y -> ( x e. z -> y e. z ) ) |