| Step |
Hyp |
Ref |
Expression |
| 1 |
|
ax7 |
|- ( x = y -> ( x = w -> y = w ) ) |
| 2 |
|
ax12v2 |
|- ( x = w -> ( x e. t -> A. x ( x = w -> x e. t ) ) ) |
| 3 |
2
|
imp |
|- ( ( x = w /\ x e. t ) -> A. x ( x = w -> x e. t ) ) |
| 4 |
|
equsb3 |
|- ( [ x / v ] v = w <-> x = w ) |
| 5 |
4
|
bicomi |
|- ( x = w <-> [ x / v ] v = w ) |
| 6 |
5
|
imbi1i |
|- ( ( x = w -> x e. t ) <-> ( [ x / v ] v = w -> x e. t ) ) |
| 7 |
6
|
albii |
|- ( A. x ( x = w -> x e. t ) <-> A. x ( [ x / v ] v = w -> x e. t ) ) |
| 8 |
|
df-clab |
|- ( x e. { v | v = w } <-> [ x / v ] v = w ) |
| 9 |
8
|
bicomi |
|- ( [ x / v ] v = w <-> x e. { v | v = w } ) |
| 10 |
9
|
imbi1i |
|- ( ( [ x / v ] v = w -> x e. t ) <-> ( x e. { v | v = w } -> x e. t ) ) |
| 11 |
10
|
albii |
|- ( A. x ( [ x / v ] v = w -> x e. t ) <-> A. x ( x e. { v | v = w } -> x e. t ) ) |
| 12 |
|
df-ss |
|- ( { v | v = w } C_ t <-> A. x ( x e. { v | v = w } -> x e. t ) ) |
| 13 |
|
df-ss |
|- ( { v | v = w } C_ t <-> A. y ( y e. { v | v = w } -> y e. t ) ) |
| 14 |
12 13
|
bitr3i |
|- ( A. x ( x e. { v | v = w } -> x e. t ) <-> A. y ( y e. { v | v = w } -> y e. t ) ) |
| 15 |
|
df-clab |
|- ( y e. { v | v = w } <-> [ y / v ] v = w ) |
| 16 |
15
|
imbi1i |
|- ( ( y e. { v | v = w } -> y e. t ) <-> ( [ y / v ] v = w -> y e. t ) ) |
| 17 |
16
|
albii |
|- ( A. y ( y e. { v | v = w } -> y e. t ) <-> A. y ( [ y / v ] v = w -> y e. t ) ) |
| 18 |
11 14 17
|
3bitri |
|- ( A. x ( [ x / v ] v = w -> x e. t ) <-> A. y ( [ y / v ] v = w -> y e. t ) ) |
| 19 |
|
equsb3 |
|- ( [ y / v ] v = w <-> y = w ) |
| 20 |
19
|
imbi1i |
|- ( ( [ y / v ] v = w -> y e. t ) <-> ( y = w -> y e. t ) ) |
| 21 |
20
|
albii |
|- ( A. y ( [ y / v ] v = w -> y e. t ) <-> A. y ( y = w -> y e. t ) ) |
| 22 |
7 18 21
|
3bitri |
|- ( A. x ( x = w -> x e. t ) <-> A. y ( y = w -> y e. t ) ) |
| 23 |
22
|
biimpi |
|- ( A. x ( x = w -> x e. t ) -> A. y ( y = w -> y e. t ) ) |
| 24 |
|
sp |
|- ( A. y ( y = w -> y e. t ) -> ( y = w -> y e. t ) ) |
| 25 |
3 23 24
|
3syl |
|- ( ( x = w /\ x e. t ) -> ( y = w -> y e. t ) ) |
| 26 |
25
|
ex |
|- ( x = w -> ( x e. t -> ( y = w -> y e. t ) ) ) |
| 27 |
26
|
com23 |
|- ( x = w -> ( y = w -> ( x e. t -> y e. t ) ) ) |
| 28 |
1 27
|
sylcom |
|- ( x = y -> ( x = w -> ( x e. t -> y e. t ) ) ) |
| 29 |
28
|
com12 |
|- ( x = w -> ( x = y -> ( x e. t -> y e. t ) ) ) |
| 30 |
29
|
equcoms |
|- ( w = x -> ( x = y -> ( x e. t -> y e. t ) ) ) |
| 31 |
|
ax6ev |
|- E. w w = x |
| 32 |
30 31
|
exlimiiv |
|- ( x = y -> ( x e. t -> y e. t ) ) |
| 33 |
|
ax9 |
|- ( z = t -> ( x e. z -> x e. t ) ) |
| 34 |
33
|
equcoms |
|- ( t = z -> ( x e. z -> x e. t ) ) |
| 35 |
|
ax9 |
|- ( t = z -> ( y e. t -> y e. z ) ) |
| 36 |
34 35
|
imim12d |
|- ( t = z -> ( ( x e. t -> y e. t ) -> ( x e. z -> y e. z ) ) ) |
| 37 |
32 36
|
syl5 |
|- ( t = z -> ( x = y -> ( x e. z -> y e. z ) ) ) |
| 38 |
|
ax6ev |
|- E. t t = z |
| 39 |
37 38
|
exlimiiv |
|- ( x = y -> ( x e. z -> y e. z ) ) |