Step |
Hyp |
Ref |
Expression |
1 |
|
ax7 |
⊢ ( 𝑥 = 𝑦 → ( 𝑥 = 𝑤 → 𝑦 = 𝑤 ) ) |
2 |
|
ax12v2 |
⊢ ( 𝑥 = 𝑤 → ( 𝑥 ∈ 𝑡 → ∀ 𝑥 ( 𝑥 = 𝑤 → 𝑥 ∈ 𝑡 ) ) ) |
3 |
2
|
imp |
⊢ ( ( 𝑥 = 𝑤 ∧ 𝑥 ∈ 𝑡 ) → ∀ 𝑥 ( 𝑥 = 𝑤 → 𝑥 ∈ 𝑡 ) ) |
4 |
|
equsb3 |
⊢ ( [ 𝑥 / 𝑣 ] 𝑣 = 𝑤 ↔ 𝑥 = 𝑤 ) |
5 |
4
|
bicomi |
⊢ ( 𝑥 = 𝑤 ↔ [ 𝑥 / 𝑣 ] 𝑣 = 𝑤 ) |
6 |
5
|
imbi1i |
⊢ ( ( 𝑥 = 𝑤 → 𝑥 ∈ 𝑡 ) ↔ ( [ 𝑥 / 𝑣 ] 𝑣 = 𝑤 → 𝑥 ∈ 𝑡 ) ) |
7 |
6
|
albii |
⊢ ( ∀ 𝑥 ( 𝑥 = 𝑤 → 𝑥 ∈ 𝑡 ) ↔ ∀ 𝑥 ( [ 𝑥 / 𝑣 ] 𝑣 = 𝑤 → 𝑥 ∈ 𝑡 ) ) |
8 |
|
df-clab |
⊢ ( 𝑥 ∈ { 𝑣 ∣ 𝑣 = 𝑤 } ↔ [ 𝑥 / 𝑣 ] 𝑣 = 𝑤 ) |
9 |
8
|
bicomi |
⊢ ( [ 𝑥 / 𝑣 ] 𝑣 = 𝑤 ↔ 𝑥 ∈ { 𝑣 ∣ 𝑣 = 𝑤 } ) |
10 |
9
|
imbi1i |
⊢ ( ( [ 𝑥 / 𝑣 ] 𝑣 = 𝑤 → 𝑥 ∈ 𝑡 ) ↔ ( 𝑥 ∈ { 𝑣 ∣ 𝑣 = 𝑤 } → 𝑥 ∈ 𝑡 ) ) |
11 |
10
|
albii |
⊢ ( ∀ 𝑥 ( [ 𝑥 / 𝑣 ] 𝑣 = 𝑤 → 𝑥 ∈ 𝑡 ) ↔ ∀ 𝑥 ( 𝑥 ∈ { 𝑣 ∣ 𝑣 = 𝑤 } → 𝑥 ∈ 𝑡 ) ) |
12 |
|
df-ss |
⊢ ( { 𝑣 ∣ 𝑣 = 𝑤 } ⊆ 𝑡 ↔ ∀ 𝑥 ( 𝑥 ∈ { 𝑣 ∣ 𝑣 = 𝑤 } → 𝑥 ∈ 𝑡 ) ) |
13 |
|
df-ss |
⊢ ( { 𝑣 ∣ 𝑣 = 𝑤 } ⊆ 𝑡 ↔ ∀ 𝑦 ( 𝑦 ∈ { 𝑣 ∣ 𝑣 = 𝑤 } → 𝑦 ∈ 𝑡 ) ) |
14 |
12 13
|
bitr3i |
⊢ ( ∀ 𝑥 ( 𝑥 ∈ { 𝑣 ∣ 𝑣 = 𝑤 } → 𝑥 ∈ 𝑡 ) ↔ ∀ 𝑦 ( 𝑦 ∈ { 𝑣 ∣ 𝑣 = 𝑤 } → 𝑦 ∈ 𝑡 ) ) |
15 |
|
df-clab |
⊢ ( 𝑦 ∈ { 𝑣 ∣ 𝑣 = 𝑤 } ↔ [ 𝑦 / 𝑣 ] 𝑣 = 𝑤 ) |
16 |
15
|
imbi1i |
⊢ ( ( 𝑦 ∈ { 𝑣 ∣ 𝑣 = 𝑤 } → 𝑦 ∈ 𝑡 ) ↔ ( [ 𝑦 / 𝑣 ] 𝑣 = 𝑤 → 𝑦 ∈ 𝑡 ) ) |
17 |
16
|
albii |
⊢ ( ∀ 𝑦 ( 𝑦 ∈ { 𝑣 ∣ 𝑣 = 𝑤 } → 𝑦 ∈ 𝑡 ) ↔ ∀ 𝑦 ( [ 𝑦 / 𝑣 ] 𝑣 = 𝑤 → 𝑦 ∈ 𝑡 ) ) |
18 |
11 14 17
|
3bitri |
⊢ ( ∀ 𝑥 ( [ 𝑥 / 𝑣 ] 𝑣 = 𝑤 → 𝑥 ∈ 𝑡 ) ↔ ∀ 𝑦 ( [ 𝑦 / 𝑣 ] 𝑣 = 𝑤 → 𝑦 ∈ 𝑡 ) ) |
19 |
|
equsb3 |
⊢ ( [ 𝑦 / 𝑣 ] 𝑣 = 𝑤 ↔ 𝑦 = 𝑤 ) |
20 |
19
|
imbi1i |
⊢ ( ( [ 𝑦 / 𝑣 ] 𝑣 = 𝑤 → 𝑦 ∈ 𝑡 ) ↔ ( 𝑦 = 𝑤 → 𝑦 ∈ 𝑡 ) ) |
21 |
20
|
albii |
⊢ ( ∀ 𝑦 ( [ 𝑦 / 𝑣 ] 𝑣 = 𝑤 → 𝑦 ∈ 𝑡 ) ↔ ∀ 𝑦 ( 𝑦 = 𝑤 → 𝑦 ∈ 𝑡 ) ) |
22 |
7 18 21
|
3bitri |
⊢ ( ∀ 𝑥 ( 𝑥 = 𝑤 → 𝑥 ∈ 𝑡 ) ↔ ∀ 𝑦 ( 𝑦 = 𝑤 → 𝑦 ∈ 𝑡 ) ) |
23 |
22
|
biimpi |
⊢ ( ∀ 𝑥 ( 𝑥 = 𝑤 → 𝑥 ∈ 𝑡 ) → ∀ 𝑦 ( 𝑦 = 𝑤 → 𝑦 ∈ 𝑡 ) ) |
24 |
|
sp |
⊢ ( ∀ 𝑦 ( 𝑦 = 𝑤 → 𝑦 ∈ 𝑡 ) → ( 𝑦 = 𝑤 → 𝑦 ∈ 𝑡 ) ) |
25 |
3 23 24
|
3syl |
⊢ ( ( 𝑥 = 𝑤 ∧ 𝑥 ∈ 𝑡 ) → ( 𝑦 = 𝑤 → 𝑦 ∈ 𝑡 ) ) |
26 |
25
|
ex |
⊢ ( 𝑥 = 𝑤 → ( 𝑥 ∈ 𝑡 → ( 𝑦 = 𝑤 → 𝑦 ∈ 𝑡 ) ) ) |
27 |
26
|
com23 |
⊢ ( 𝑥 = 𝑤 → ( 𝑦 = 𝑤 → ( 𝑥 ∈ 𝑡 → 𝑦 ∈ 𝑡 ) ) ) |
28 |
1 27
|
sylcom |
⊢ ( 𝑥 = 𝑦 → ( 𝑥 = 𝑤 → ( 𝑥 ∈ 𝑡 → 𝑦 ∈ 𝑡 ) ) ) |
29 |
28
|
com12 |
⊢ ( 𝑥 = 𝑤 → ( 𝑥 = 𝑦 → ( 𝑥 ∈ 𝑡 → 𝑦 ∈ 𝑡 ) ) ) |
30 |
29
|
equcoms |
⊢ ( 𝑤 = 𝑥 → ( 𝑥 = 𝑦 → ( 𝑥 ∈ 𝑡 → 𝑦 ∈ 𝑡 ) ) ) |
31 |
|
ax6ev |
⊢ ∃ 𝑤 𝑤 = 𝑥 |
32 |
30 31
|
exlimiiv |
⊢ ( 𝑥 = 𝑦 → ( 𝑥 ∈ 𝑡 → 𝑦 ∈ 𝑡 ) ) |
33 |
|
ax9 |
⊢ ( 𝑧 = 𝑡 → ( 𝑥 ∈ 𝑧 → 𝑥 ∈ 𝑡 ) ) |
34 |
33
|
equcoms |
⊢ ( 𝑡 = 𝑧 → ( 𝑥 ∈ 𝑧 → 𝑥 ∈ 𝑡 ) ) |
35 |
|
ax9 |
⊢ ( 𝑡 = 𝑧 → ( 𝑦 ∈ 𝑡 → 𝑦 ∈ 𝑧 ) ) |
36 |
34 35
|
imim12d |
⊢ ( 𝑡 = 𝑧 → ( ( 𝑥 ∈ 𝑡 → 𝑦 ∈ 𝑡 ) → ( 𝑥 ∈ 𝑧 → 𝑦 ∈ 𝑧 ) ) ) |
37 |
32 36
|
syl5 |
⊢ ( 𝑡 = 𝑧 → ( 𝑥 = 𝑦 → ( 𝑥 ∈ 𝑧 → 𝑦 ∈ 𝑧 ) ) ) |
38 |
|
ax6ev |
⊢ ∃ 𝑡 𝑡 = 𝑧 |
39 |
37 38
|
exlimiiv |
⊢ ( 𝑥 = 𝑦 → ( 𝑥 ∈ 𝑧 → 𝑦 ∈ 𝑧 ) ) |