| Step |
Hyp |
Ref |
Expression |
| 1 |
|
indcthing.b |
⊢ ( 𝜑 → 𝐵 = ( Base ‘ 𝐶 ) ) |
| 2 |
|
indcthing.h |
⊢ ( 𝜑 → 𝐻 = ( Hom ‘ 𝐶 ) ) |
| 3 |
|
indcthing.c |
⊢ ( 𝜑 → 𝐶 ∈ Cat ) |
| 4 |
|
indcthing.i |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ) → ( 𝑥 𝐻 𝑦 ) = { 𝐹 } ) |
| 5 |
|
eqid |
⊢ { 𝐹 } = { 𝐹 } |
| 6 |
|
mosn |
⊢ ( { 𝐹 } = { 𝐹 } → ∃* 𝑓 𝑓 ∈ { 𝐹 } ) |
| 7 |
5 6
|
ax-mp |
⊢ ∃* 𝑓 𝑓 ∈ { 𝐹 } |
| 8 |
4
|
eleq2d |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ) → ( 𝑓 ∈ ( 𝑥 𝐻 𝑦 ) ↔ 𝑓 ∈ { 𝐹 } ) ) |
| 9 |
8
|
mobidv |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ) → ( ∃* 𝑓 𝑓 ∈ ( 𝑥 𝐻 𝑦 ) ↔ ∃* 𝑓 𝑓 ∈ { 𝐹 } ) ) |
| 10 |
7 9
|
mpbiri |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ) → ∃* 𝑓 𝑓 ∈ ( 𝑥 𝐻 𝑦 ) ) |
| 11 |
1 2 10 3
|
isthincd |
⊢ ( 𝜑 → 𝐶 ∈ ThinCat ) |