Metamath Proof Explorer


Theorem indcthing

Description: An indiscrete category, i.e., a category where all hom-sets have exactly one morphism, is thin. (Contributed by Zhi Wang, 11-Nov-2025)

Ref Expression
Hypotheses indcthing.b ( 𝜑𝐵 = ( Base ‘ 𝐶 ) )
indcthing.h ( 𝜑𝐻 = ( Hom ‘ 𝐶 ) )
indcthing.c ( 𝜑𝐶 ∈ Cat )
indcthing.i ( ( 𝜑 ∧ ( 𝑥𝐵𝑦𝐵 ) ) → ( 𝑥 𝐻 𝑦 ) = { 𝐹 } )
Assertion indcthing ( 𝜑𝐶 ∈ ThinCat )

Proof

Step Hyp Ref Expression
1 indcthing.b ( 𝜑𝐵 = ( Base ‘ 𝐶 ) )
2 indcthing.h ( 𝜑𝐻 = ( Hom ‘ 𝐶 ) )
3 indcthing.c ( 𝜑𝐶 ∈ Cat )
4 indcthing.i ( ( 𝜑 ∧ ( 𝑥𝐵𝑦𝐵 ) ) → ( 𝑥 𝐻 𝑦 ) = { 𝐹 } )
5 eqid { 𝐹 } = { 𝐹 }
6 mosn ( { 𝐹 } = { 𝐹 } → ∃* 𝑓 𝑓 ∈ { 𝐹 } )
7 5 6 ax-mp ∃* 𝑓 𝑓 ∈ { 𝐹 }
8 4 eleq2d ( ( 𝜑 ∧ ( 𝑥𝐵𝑦𝐵 ) ) → ( 𝑓 ∈ ( 𝑥 𝐻 𝑦 ) ↔ 𝑓 ∈ { 𝐹 } ) )
9 8 mobidv ( ( 𝜑 ∧ ( 𝑥𝐵𝑦𝐵 ) ) → ( ∃* 𝑓 𝑓 ∈ ( 𝑥 𝐻 𝑦 ) ↔ ∃* 𝑓 𝑓 ∈ { 𝐹 } ) )
10 7 9 mpbiri ( ( 𝜑 ∧ ( 𝑥𝐵𝑦𝐵 ) ) → ∃* 𝑓 𝑓 ∈ ( 𝑥 𝐻 𝑦 ) )
11 1 2 10 3 isthincd ( 𝜑𝐶 ∈ ThinCat )