| Step |
Hyp |
Ref |
Expression |
| 1 |
|
indcthing.b |
|- ( ph -> B = ( Base ` C ) ) |
| 2 |
|
indcthing.h |
|- ( ph -> H = ( Hom ` C ) ) |
| 3 |
|
indcthing.c |
|- ( ph -> C e. Cat ) |
| 4 |
|
indcthing.i |
|- ( ( ph /\ ( x e. B /\ y e. B ) ) -> ( x H y ) = { F } ) |
| 5 |
|
eqid |
|- { F } = { F } |
| 6 |
|
mosn |
|- ( { F } = { F } -> E* f f e. { F } ) |
| 7 |
5 6
|
ax-mp |
|- E* f f e. { F } |
| 8 |
4
|
eleq2d |
|- ( ( ph /\ ( x e. B /\ y e. B ) ) -> ( f e. ( x H y ) <-> f e. { F } ) ) |
| 9 |
8
|
mobidv |
|- ( ( ph /\ ( x e. B /\ y e. B ) ) -> ( E* f f e. ( x H y ) <-> E* f f e. { F } ) ) |
| 10 |
7 9
|
mpbiri |
|- ( ( ph /\ ( x e. B /\ y e. B ) ) -> E* f f e. ( x H y ) ) |
| 11 |
1 2 10 3
|
isthincd |
|- ( ph -> C e. ThinCat ) |