| Step |
Hyp |
Ref |
Expression |
| 1 |
|
indcthing.b |
|- ( ph -> B = ( Base ` C ) ) |
| 2 |
|
indcthing.h |
|- ( ph -> H = ( Hom ` C ) ) |
| 3 |
|
indcthing.c |
|- ( ph -> C e. Cat ) |
| 4 |
|
discthing.i |
|- ( ( ph /\ ( x e. B /\ y e. B ) ) -> ( x H y ) = if ( x = y , { I } , (/) ) ) |
| 5 |
|
eleq2w2 |
|- ( { I } = if ( x = y , { I } , (/) ) -> ( i e. { I } <-> i e. if ( x = y , { I } , (/) ) ) ) |
| 6 |
5
|
mobidv |
|- ( { I } = if ( x = y , { I } , (/) ) -> ( E* i i e. { I } <-> E* i i e. if ( x = y , { I } , (/) ) ) ) |
| 7 |
|
eleq2w2 |
|- ( (/) = if ( x = y , { I } , (/) ) -> ( i e. (/) <-> i e. if ( x = y , { I } , (/) ) ) ) |
| 8 |
7
|
mobidv |
|- ( (/) = if ( x = y , { I } , (/) ) -> ( E* i i e. (/) <-> E* i i e. if ( x = y , { I } , (/) ) ) ) |
| 9 |
|
eqid |
|- { I } = { I } |
| 10 |
|
mosn |
|- ( { I } = { I } -> E* i i e. { I } ) |
| 11 |
9 10
|
mp1i |
|- ( ( ( ph /\ ( x e. B /\ y e. B ) ) /\ x = y ) -> E* i i e. { I } ) |
| 12 |
|
eqid |
|- (/) = (/) |
| 13 |
|
mo0 |
|- ( (/) = (/) -> E* i i e. (/) ) |
| 14 |
12 13
|
mp1i |
|- ( ( ( ph /\ ( x e. B /\ y e. B ) ) /\ -. x = y ) -> E* i i e. (/) ) |
| 15 |
6 8 11 14
|
ifbothda |
|- ( ( ph /\ ( x e. B /\ y e. B ) ) -> E* i i e. if ( x = y , { I } , (/) ) ) |
| 16 |
4
|
eleq2d |
|- ( ( ph /\ ( x e. B /\ y e. B ) ) -> ( i e. ( x H y ) <-> i e. if ( x = y , { I } , (/) ) ) ) |
| 17 |
16
|
mobidv |
|- ( ( ph /\ ( x e. B /\ y e. B ) ) -> ( E* i i e. ( x H y ) <-> E* i i e. if ( x = y , { I } , (/) ) ) ) |
| 18 |
15 17
|
mpbird |
|- ( ( ph /\ ( x e. B /\ y e. B ) ) -> E* i i e. ( x H y ) ) |
| 19 |
1 2 18 3
|
isthincd |
|- ( ph -> C e. ThinCat ) |