Metamath Proof Explorer


Theorem discthing

Description: A discrete category, i.e., a category where all morphisms are identity morphisms, is thin. Example 3.26(1) of Adamek p. 33. (Contributed by Zhi Wang, 11-Nov-2025)

Ref Expression
Hypotheses indcthing.b φ B = Base C
indcthing.h φ H = Hom C
indcthing.c φ C Cat
discthing.i φ x B y B x H y = if x = y I
Assertion discthing φ C ThinCat

Proof

Step Hyp Ref Expression
1 indcthing.b φ B = Base C
2 indcthing.h φ H = Hom C
3 indcthing.c φ C Cat
4 discthing.i φ x B y B x H y = if x = y I
5 eleq2w2 I = if x = y I i I i if x = y I
6 5 mobidv I = if x = y I * i i I * i i if x = y I
7 eleq2w2 = if x = y I i i if x = y I
8 7 mobidv = if x = y I * i i * i i if x = y I
9 eqid I = I
10 mosn I = I * i i I
11 9 10 mp1i φ x B y B x = y * i i I
12 eqid =
13 mo0 = * i i
14 12 13 mp1i φ x B y B ¬ x = y * i i
15 6 8 11 14 ifbothda φ x B y B * i i if x = y I
16 4 eleq2d φ x B y B i x H y i if x = y I
17 16 mobidv φ x B y B * i i x H y * i i if x = y I
18 15 17 mpbird φ x B y B * i i x H y
19 1 2 18 3 isthincd φ C ThinCat