Metamath Proof Explorer


Theorem discthing

Description: A discrete category, i.e., a category where all morphisms are identity morphisms, is thin. Example 3.26(1) of Adamek p. 33. (Contributed by Zhi Wang, 11-Nov-2025)

Ref Expression
Hypotheses indcthing.b ( 𝜑𝐵 = ( Base ‘ 𝐶 ) )
indcthing.h ( 𝜑𝐻 = ( Hom ‘ 𝐶 ) )
indcthing.c ( 𝜑𝐶 ∈ Cat )
discthing.i ( ( 𝜑 ∧ ( 𝑥𝐵𝑦𝐵 ) ) → ( 𝑥 𝐻 𝑦 ) = if ( 𝑥 = 𝑦 , { 𝐼 } , ∅ ) )
Assertion discthing ( 𝜑𝐶 ∈ ThinCat )

Proof

Step Hyp Ref Expression
1 indcthing.b ( 𝜑𝐵 = ( Base ‘ 𝐶 ) )
2 indcthing.h ( 𝜑𝐻 = ( Hom ‘ 𝐶 ) )
3 indcthing.c ( 𝜑𝐶 ∈ Cat )
4 discthing.i ( ( 𝜑 ∧ ( 𝑥𝐵𝑦𝐵 ) ) → ( 𝑥 𝐻 𝑦 ) = if ( 𝑥 = 𝑦 , { 𝐼 } , ∅ ) )
5 eleq2w2 ( { 𝐼 } = if ( 𝑥 = 𝑦 , { 𝐼 } , ∅ ) → ( 𝑖 ∈ { 𝐼 } ↔ 𝑖 ∈ if ( 𝑥 = 𝑦 , { 𝐼 } , ∅ ) ) )
6 5 mobidv ( { 𝐼 } = if ( 𝑥 = 𝑦 , { 𝐼 } , ∅ ) → ( ∃* 𝑖 𝑖 ∈ { 𝐼 } ↔ ∃* 𝑖 𝑖 ∈ if ( 𝑥 = 𝑦 , { 𝐼 } , ∅ ) ) )
7 eleq2w2 ( ∅ = if ( 𝑥 = 𝑦 , { 𝐼 } , ∅ ) → ( 𝑖 ∈ ∅ ↔ 𝑖 ∈ if ( 𝑥 = 𝑦 , { 𝐼 } , ∅ ) ) )
8 7 mobidv ( ∅ = if ( 𝑥 = 𝑦 , { 𝐼 } , ∅ ) → ( ∃* 𝑖 𝑖 ∈ ∅ ↔ ∃* 𝑖 𝑖 ∈ if ( 𝑥 = 𝑦 , { 𝐼 } , ∅ ) ) )
9 eqid { 𝐼 } = { 𝐼 }
10 mosn ( { 𝐼 } = { 𝐼 } → ∃* 𝑖 𝑖 ∈ { 𝐼 } )
11 9 10 mp1i ( ( ( 𝜑 ∧ ( 𝑥𝐵𝑦𝐵 ) ) ∧ 𝑥 = 𝑦 ) → ∃* 𝑖 𝑖 ∈ { 𝐼 } )
12 eqid ∅ = ∅
13 mo0 ( ∅ = ∅ → ∃* 𝑖 𝑖 ∈ ∅ )
14 12 13 mp1i ( ( ( 𝜑 ∧ ( 𝑥𝐵𝑦𝐵 ) ) ∧ ¬ 𝑥 = 𝑦 ) → ∃* 𝑖 𝑖 ∈ ∅ )
15 6 8 11 14 ifbothda ( ( 𝜑 ∧ ( 𝑥𝐵𝑦𝐵 ) ) → ∃* 𝑖 𝑖 ∈ if ( 𝑥 = 𝑦 , { 𝐼 } , ∅ ) )
16 4 eleq2d ( ( 𝜑 ∧ ( 𝑥𝐵𝑦𝐵 ) ) → ( 𝑖 ∈ ( 𝑥 𝐻 𝑦 ) ↔ 𝑖 ∈ if ( 𝑥 = 𝑦 , { 𝐼 } , ∅ ) ) )
17 16 mobidv ( ( 𝜑 ∧ ( 𝑥𝐵𝑦𝐵 ) ) → ( ∃* 𝑖 𝑖 ∈ ( 𝑥 𝐻 𝑦 ) ↔ ∃* 𝑖 𝑖 ∈ if ( 𝑥 = 𝑦 , { 𝐼 } , ∅ ) ) )
18 15 17 mpbird ( ( 𝜑 ∧ ( 𝑥𝐵𝑦𝐵 ) ) → ∃* 𝑖 𝑖 ∈ ( 𝑥 𝐻 𝑦 ) )
19 1 2 18 3 isthincd ( 𝜑𝐶 ∈ ThinCat )