| Step |
Hyp |
Ref |
Expression |
| 1 |
|
indcthing.b |
⊢ ( 𝜑 → 𝐵 = ( Base ‘ 𝐶 ) ) |
| 2 |
|
indcthing.h |
⊢ ( 𝜑 → 𝐻 = ( Hom ‘ 𝐶 ) ) |
| 3 |
|
indcthing.c |
⊢ ( 𝜑 → 𝐶 ∈ Cat ) |
| 4 |
|
discthing.i |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ) → ( 𝑥 𝐻 𝑦 ) = if ( 𝑥 = 𝑦 , { 𝐼 } , ∅ ) ) |
| 5 |
|
eleq2w2 |
⊢ ( { 𝐼 } = if ( 𝑥 = 𝑦 , { 𝐼 } , ∅ ) → ( 𝑖 ∈ { 𝐼 } ↔ 𝑖 ∈ if ( 𝑥 = 𝑦 , { 𝐼 } , ∅ ) ) ) |
| 6 |
5
|
mobidv |
⊢ ( { 𝐼 } = if ( 𝑥 = 𝑦 , { 𝐼 } , ∅ ) → ( ∃* 𝑖 𝑖 ∈ { 𝐼 } ↔ ∃* 𝑖 𝑖 ∈ if ( 𝑥 = 𝑦 , { 𝐼 } , ∅ ) ) ) |
| 7 |
|
eleq2w2 |
⊢ ( ∅ = if ( 𝑥 = 𝑦 , { 𝐼 } , ∅ ) → ( 𝑖 ∈ ∅ ↔ 𝑖 ∈ if ( 𝑥 = 𝑦 , { 𝐼 } , ∅ ) ) ) |
| 8 |
7
|
mobidv |
⊢ ( ∅ = if ( 𝑥 = 𝑦 , { 𝐼 } , ∅ ) → ( ∃* 𝑖 𝑖 ∈ ∅ ↔ ∃* 𝑖 𝑖 ∈ if ( 𝑥 = 𝑦 , { 𝐼 } , ∅ ) ) ) |
| 9 |
|
eqid |
⊢ { 𝐼 } = { 𝐼 } |
| 10 |
|
mosn |
⊢ ( { 𝐼 } = { 𝐼 } → ∃* 𝑖 𝑖 ∈ { 𝐼 } ) |
| 11 |
9 10
|
mp1i |
⊢ ( ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ) ∧ 𝑥 = 𝑦 ) → ∃* 𝑖 𝑖 ∈ { 𝐼 } ) |
| 12 |
|
eqid |
⊢ ∅ = ∅ |
| 13 |
|
mo0 |
⊢ ( ∅ = ∅ → ∃* 𝑖 𝑖 ∈ ∅ ) |
| 14 |
12 13
|
mp1i |
⊢ ( ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ) ∧ ¬ 𝑥 = 𝑦 ) → ∃* 𝑖 𝑖 ∈ ∅ ) |
| 15 |
6 8 11 14
|
ifbothda |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ) → ∃* 𝑖 𝑖 ∈ if ( 𝑥 = 𝑦 , { 𝐼 } , ∅ ) ) |
| 16 |
4
|
eleq2d |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ) → ( 𝑖 ∈ ( 𝑥 𝐻 𝑦 ) ↔ 𝑖 ∈ if ( 𝑥 = 𝑦 , { 𝐼 } , ∅ ) ) ) |
| 17 |
16
|
mobidv |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ) → ( ∃* 𝑖 𝑖 ∈ ( 𝑥 𝐻 𝑦 ) ↔ ∃* 𝑖 𝑖 ∈ if ( 𝑥 = 𝑦 , { 𝐼 } , ∅ ) ) ) |
| 18 |
15 17
|
mpbird |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ) → ∃* 𝑖 𝑖 ∈ ( 𝑥 𝐻 𝑦 ) ) |
| 19 |
1 2 18 3
|
isthincd |
⊢ ( 𝜑 → 𝐶 ∈ ThinCat ) |