| Step |
Hyp |
Ref |
Expression |
| 1 |
|
df-pss |
⊢ ( 𝑥 ⊊ ∪ 𝑥 ↔ ( 𝑥 ⊆ ∪ 𝑥 ∧ 𝑥 ≠ ∪ 𝑥 ) ) |
| 2 |
|
unieq |
⊢ ( 𝑥 = ∅ → ∪ 𝑥 = ∪ ∅ ) |
| 3 |
|
uni0 |
⊢ ∪ ∅ = ∅ |
| 4 |
2 3
|
eqtr2di |
⊢ ( 𝑥 = ∅ → ∅ = ∪ 𝑥 ) |
| 5 |
|
eqtr |
⊢ ( ( 𝑥 = ∅ ∧ ∅ = ∪ 𝑥 ) → 𝑥 = ∪ 𝑥 ) |
| 6 |
4 5
|
mpdan |
⊢ ( 𝑥 = ∅ → 𝑥 = ∪ 𝑥 ) |
| 7 |
6
|
necon3i |
⊢ ( 𝑥 ≠ ∪ 𝑥 → 𝑥 ≠ ∅ ) |
| 8 |
7
|
anim1i |
⊢ ( ( 𝑥 ≠ ∪ 𝑥 ∧ 𝑥 ⊆ ∪ 𝑥 ) → ( 𝑥 ≠ ∅ ∧ 𝑥 ⊆ ∪ 𝑥 ) ) |
| 9 |
8
|
ancoms |
⊢ ( ( 𝑥 ⊆ ∪ 𝑥 ∧ 𝑥 ≠ ∪ 𝑥 ) → ( 𝑥 ≠ ∅ ∧ 𝑥 ⊆ ∪ 𝑥 ) ) |
| 10 |
1 9
|
sylbi |
⊢ ( 𝑥 ⊊ ∪ 𝑥 → ( 𝑥 ≠ ∅ ∧ 𝑥 ⊆ ∪ 𝑥 ) ) |
| 11 |
10
|
eximi |
⊢ ( ∃ 𝑥 𝑥 ⊊ ∪ 𝑥 → ∃ 𝑥 ( 𝑥 ≠ ∅ ∧ 𝑥 ⊆ ∪ 𝑥 ) ) |
| 12 |
|
eqid |
⊢ ( 𝑦 ∈ V ↦ { 𝑤 ∈ 𝑥 ∣ ( 𝑤 ∩ 𝑥 ) ⊆ 𝑦 } ) = ( 𝑦 ∈ V ↦ { 𝑤 ∈ 𝑥 ∣ ( 𝑤 ∩ 𝑥 ) ⊆ 𝑦 } ) |
| 13 |
|
eqid |
⊢ ( rec ( ( 𝑦 ∈ V ↦ { 𝑤 ∈ 𝑥 ∣ ( 𝑤 ∩ 𝑥 ) ⊆ 𝑦 } ) , ∅ ) ↾ ω ) = ( rec ( ( 𝑦 ∈ V ↦ { 𝑤 ∈ 𝑥 ∣ ( 𝑤 ∩ 𝑥 ) ⊆ 𝑦 } ) , ∅ ) ↾ ω ) |
| 14 |
|
vex |
⊢ 𝑥 ∈ V |
| 15 |
12 13 14 14
|
inf3lem7 |
⊢ ( ( 𝑥 ≠ ∅ ∧ 𝑥 ⊆ ∪ 𝑥 ) → ω ∈ V ) |
| 16 |
15
|
exlimiv |
⊢ ( ∃ 𝑥 ( 𝑥 ≠ ∅ ∧ 𝑥 ⊆ ∪ 𝑥 ) → ω ∈ V ) |
| 17 |
11 16
|
syl |
⊢ ( ∃ 𝑥 𝑥 ⊊ ∪ 𝑥 → ω ∈ V ) |
| 18 |
|
infeq5i |
⊢ ( ω ∈ V → ∃ 𝑥 𝑥 ⊊ ∪ 𝑥 ) |
| 19 |
17 18
|
impbii |
⊢ ( ∃ 𝑥 𝑥 ⊊ ∪ 𝑥 ↔ ω ∈ V ) |