Metamath Proof Explorer


Theorem infeq5

Description: The statement "there exists a set that is a proper subset of its union" is equivalent to the Axiom of Infinity (shown on the right-hand side in the form of omex .) The left-hand side provides us with a very short way to express the Axiom of Infinity using only elementary symbols. This proof of equivalence does not depend on the Axiom of Infinity. (Contributed by NM, 23-Mar-2004) (Revised by Mario Carneiro, 16-Nov-2014)

Ref Expression
Assertion infeq5 xxxωV

Proof

Step Hyp Ref Expression
1 df-pss xxxxxx
2 unieq x=x=
3 uni0 =
4 2 3 eqtr2di x==x
5 eqtr x==xx=x
6 4 5 mpdan x=x=x
7 6 necon3i xxx
8 7 anim1i xxxxxxx
9 8 ancoms xxxxxxx
10 1 9 sylbi xxxxx
11 10 eximi xxxxxxx
12 eqid yVwx|wxy=yVwx|wxy
13 eqid recyVwx|wxyω=recyVwx|wxyω
14 vex xV
15 12 13 14 14 inf3lem7 xxxωV
16 15 exlimiv xxxxωV
17 11 16 syl xxxωV
18 infeq5i ωVxxx
19 17 18 impbii xxxωV