Step |
Hyp |
Ref |
Expression |
1 |
|
initoeu1.c |
⊢ ( 𝜑 → 𝐶 ∈ Cat ) |
2 |
|
initoeu1.a |
⊢ ( 𝜑 → 𝐴 ∈ ( InitO ‘ 𝐶 ) ) |
3 |
|
initoeu2lem.x |
⊢ 𝑋 = ( Base ‘ 𝐶 ) |
4 |
|
initoeu2lem.h |
⊢ 𝐻 = ( Hom ‘ 𝐶 ) |
5 |
|
initoeu2lem.i |
⊢ 𝐼 = ( Iso ‘ 𝐶 ) |
6 |
|
initoeu2lem.o |
⊢ ⚬ = ( comp ‘ 𝐶 ) |
7 |
|
3simpa |
⊢ ( ( ( 𝜑 ∧ ( 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ∧ 𝐷 ∈ 𝑋 ) ) ∧ ( 𝐾 ∈ ( 𝐵 𝐼 𝐴 ) ∧ 𝐹 ∈ ( 𝐴 𝐻 𝐷 ) ∧ 𝐺 ∈ ( 𝐵 𝐻 𝐷 ) ) ∧ ( ( 𝐹 ( 〈 𝐵 , 𝐴 〉 ⚬ 𝐷 ) 𝐾 ) ( 〈 𝐴 , 𝐵 〉 ⚬ 𝐷 ) ( ( 𝐵 ( Inv ‘ 𝐶 ) 𝐴 ) ‘ 𝐾 ) ) = ( 𝐺 ( 〈 𝐴 , 𝐵 〉 ⚬ 𝐷 ) ( ( 𝐵 ( Inv ‘ 𝐶 ) 𝐴 ) ‘ 𝐾 ) ) ) → ( ( 𝜑 ∧ ( 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ∧ 𝐷 ∈ 𝑋 ) ) ∧ ( 𝐾 ∈ ( 𝐵 𝐼 𝐴 ) ∧ 𝐹 ∈ ( 𝐴 𝐻 𝐷 ) ∧ 𝐺 ∈ ( 𝐵 𝐻 𝐷 ) ) ) ) |
8 |
|
simp3 |
⊢ ( ( ( 𝜑 ∧ ( 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ∧ 𝐷 ∈ 𝑋 ) ) ∧ ( 𝐾 ∈ ( 𝐵 𝐼 𝐴 ) ∧ 𝐹 ∈ ( 𝐴 𝐻 𝐷 ) ∧ 𝐺 ∈ ( 𝐵 𝐻 𝐷 ) ) ∧ ( ( 𝐹 ( 〈 𝐵 , 𝐴 〉 ⚬ 𝐷 ) 𝐾 ) ( 〈 𝐴 , 𝐵 〉 ⚬ 𝐷 ) ( ( 𝐵 ( Inv ‘ 𝐶 ) 𝐴 ) ‘ 𝐾 ) ) = ( 𝐺 ( 〈 𝐴 , 𝐵 〉 ⚬ 𝐷 ) ( ( 𝐵 ( Inv ‘ 𝐶 ) 𝐴 ) ‘ 𝐾 ) ) ) → ( ( 𝐹 ( 〈 𝐵 , 𝐴 〉 ⚬ 𝐷 ) 𝐾 ) ( 〈 𝐴 , 𝐵 〉 ⚬ 𝐷 ) ( ( 𝐵 ( Inv ‘ 𝐶 ) 𝐴 ) ‘ 𝐾 ) ) = ( 𝐺 ( 〈 𝐴 , 𝐵 〉 ⚬ 𝐷 ) ( ( 𝐵 ( Inv ‘ 𝐶 ) 𝐴 ) ‘ 𝐾 ) ) ) |
9 |
8
|
eqcomd |
⊢ ( ( ( 𝜑 ∧ ( 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ∧ 𝐷 ∈ 𝑋 ) ) ∧ ( 𝐾 ∈ ( 𝐵 𝐼 𝐴 ) ∧ 𝐹 ∈ ( 𝐴 𝐻 𝐷 ) ∧ 𝐺 ∈ ( 𝐵 𝐻 𝐷 ) ) ∧ ( ( 𝐹 ( 〈 𝐵 , 𝐴 〉 ⚬ 𝐷 ) 𝐾 ) ( 〈 𝐴 , 𝐵 〉 ⚬ 𝐷 ) ( ( 𝐵 ( Inv ‘ 𝐶 ) 𝐴 ) ‘ 𝐾 ) ) = ( 𝐺 ( 〈 𝐴 , 𝐵 〉 ⚬ 𝐷 ) ( ( 𝐵 ( Inv ‘ 𝐶 ) 𝐴 ) ‘ 𝐾 ) ) ) → ( 𝐺 ( 〈 𝐴 , 𝐵 〉 ⚬ 𝐷 ) ( ( 𝐵 ( Inv ‘ 𝐶 ) 𝐴 ) ‘ 𝐾 ) ) = ( ( 𝐹 ( 〈 𝐵 , 𝐴 〉 ⚬ 𝐷 ) 𝐾 ) ( 〈 𝐴 , 𝐵 〉 ⚬ 𝐷 ) ( ( 𝐵 ( Inv ‘ 𝐶 ) 𝐴 ) ‘ 𝐾 ) ) ) |
10 |
|
eqid |
⊢ ( Inv ‘ 𝐶 ) = ( Inv ‘ 𝐶 ) |
11 |
1
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ∧ 𝐷 ∈ 𝑋 ) ) → 𝐶 ∈ Cat ) |
12 |
11
|
adantr |
⊢ ( ( ( 𝜑 ∧ ( 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ∧ 𝐷 ∈ 𝑋 ) ) ∧ ( 𝐾 ∈ ( 𝐵 𝐼 𝐴 ) ∧ 𝐹 ∈ ( 𝐴 𝐻 𝐷 ) ∧ 𝐺 ∈ ( 𝐵 𝐻 𝐷 ) ) ) → 𝐶 ∈ Cat ) |
13 |
|
simpr1 |
⊢ ( ( 𝜑 ∧ ( 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ∧ 𝐷 ∈ 𝑋 ) ) → 𝐴 ∈ 𝑋 ) |
14 |
13
|
adantr |
⊢ ( ( ( 𝜑 ∧ ( 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ∧ 𝐷 ∈ 𝑋 ) ) ∧ ( 𝐾 ∈ ( 𝐵 𝐼 𝐴 ) ∧ 𝐹 ∈ ( 𝐴 𝐻 𝐷 ) ∧ 𝐺 ∈ ( 𝐵 𝐻 𝐷 ) ) ) → 𝐴 ∈ 𝑋 ) |
15 |
|
simpr2 |
⊢ ( ( 𝜑 ∧ ( 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ∧ 𝐷 ∈ 𝑋 ) ) → 𝐵 ∈ 𝑋 ) |
16 |
15
|
adantr |
⊢ ( ( ( 𝜑 ∧ ( 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ∧ 𝐷 ∈ 𝑋 ) ) ∧ ( 𝐾 ∈ ( 𝐵 𝐼 𝐴 ) ∧ 𝐹 ∈ ( 𝐴 𝐻 𝐷 ) ∧ 𝐺 ∈ ( 𝐵 𝐻 𝐷 ) ) ) → 𝐵 ∈ 𝑋 ) |
17 |
|
simplr3 |
⊢ ( ( ( 𝜑 ∧ ( 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ∧ 𝐷 ∈ 𝑋 ) ) ∧ ( 𝐾 ∈ ( 𝐵 𝐼 𝐴 ) ∧ 𝐹 ∈ ( 𝐴 𝐻 𝐷 ) ∧ 𝐺 ∈ ( 𝐵 𝐻 𝐷 ) ) ) → 𝐷 ∈ 𝑋 ) |
18 |
5
|
oveqi |
⊢ ( 𝐵 𝐼 𝐴 ) = ( 𝐵 ( Iso ‘ 𝐶 ) 𝐴 ) |
19 |
18
|
eleq2i |
⊢ ( 𝐾 ∈ ( 𝐵 𝐼 𝐴 ) ↔ 𝐾 ∈ ( 𝐵 ( Iso ‘ 𝐶 ) 𝐴 ) ) |
20 |
19
|
biimpi |
⊢ ( 𝐾 ∈ ( 𝐵 𝐼 𝐴 ) → 𝐾 ∈ ( 𝐵 ( Iso ‘ 𝐶 ) 𝐴 ) ) |
21 |
20
|
3ad2ant1 |
⊢ ( ( 𝐾 ∈ ( 𝐵 𝐼 𝐴 ) ∧ 𝐹 ∈ ( 𝐴 𝐻 𝐷 ) ∧ 𝐺 ∈ ( 𝐵 𝐻 𝐷 ) ) → 𝐾 ∈ ( 𝐵 ( Iso ‘ 𝐶 ) 𝐴 ) ) |
22 |
21
|
adantl |
⊢ ( ( ( 𝜑 ∧ ( 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ∧ 𝐷 ∈ 𝑋 ) ) ∧ ( 𝐾 ∈ ( 𝐵 𝐼 𝐴 ) ∧ 𝐹 ∈ ( 𝐴 𝐻 𝐷 ) ∧ 𝐺 ∈ ( 𝐵 𝐻 𝐷 ) ) ) → 𝐾 ∈ ( 𝐵 ( Iso ‘ 𝐶 ) 𝐴 ) ) |
23 |
4
|
oveqi |
⊢ ( 𝐵 𝐻 𝐷 ) = ( 𝐵 ( Hom ‘ 𝐶 ) 𝐷 ) |
24 |
23
|
eleq2i |
⊢ ( 𝐺 ∈ ( 𝐵 𝐻 𝐷 ) ↔ 𝐺 ∈ ( 𝐵 ( Hom ‘ 𝐶 ) 𝐷 ) ) |
25 |
24
|
biimpi |
⊢ ( 𝐺 ∈ ( 𝐵 𝐻 𝐷 ) → 𝐺 ∈ ( 𝐵 ( Hom ‘ 𝐶 ) 𝐷 ) ) |
26 |
25
|
3ad2ant3 |
⊢ ( ( 𝐾 ∈ ( 𝐵 𝐼 𝐴 ) ∧ 𝐹 ∈ ( 𝐴 𝐻 𝐷 ) ∧ 𝐺 ∈ ( 𝐵 𝐻 𝐷 ) ) → 𝐺 ∈ ( 𝐵 ( Hom ‘ 𝐶 ) 𝐷 ) ) |
27 |
26
|
adantl |
⊢ ( ( ( 𝜑 ∧ ( 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ∧ 𝐷 ∈ 𝑋 ) ) ∧ ( 𝐾 ∈ ( 𝐵 𝐼 𝐴 ) ∧ 𝐹 ∈ ( 𝐴 𝐻 𝐷 ) ∧ 𝐺 ∈ ( 𝐵 𝐻 𝐷 ) ) ) → 𝐺 ∈ ( 𝐵 ( Hom ‘ 𝐶 ) 𝐷 ) ) |
28 |
|
eqid |
⊢ ( Hom ‘ 𝐶 ) = ( Hom ‘ 𝐶 ) |
29 |
3 28 5 11 15 13
|
isohom |
⊢ ( ( 𝜑 ∧ ( 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ∧ 𝐷 ∈ 𝑋 ) ) → ( 𝐵 𝐼 𝐴 ) ⊆ ( 𝐵 ( Hom ‘ 𝐶 ) 𝐴 ) ) |
30 |
29
|
sseld |
⊢ ( ( 𝜑 ∧ ( 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ∧ 𝐷 ∈ 𝑋 ) ) → ( 𝐾 ∈ ( 𝐵 𝐼 𝐴 ) → 𝐾 ∈ ( 𝐵 ( Hom ‘ 𝐶 ) 𝐴 ) ) ) |
31 |
30
|
com12 |
⊢ ( 𝐾 ∈ ( 𝐵 𝐼 𝐴 ) → ( ( 𝜑 ∧ ( 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ∧ 𝐷 ∈ 𝑋 ) ) → 𝐾 ∈ ( 𝐵 ( Hom ‘ 𝐶 ) 𝐴 ) ) ) |
32 |
31
|
3ad2ant1 |
⊢ ( ( 𝐾 ∈ ( 𝐵 𝐼 𝐴 ) ∧ 𝐹 ∈ ( 𝐴 𝐻 𝐷 ) ∧ 𝐺 ∈ ( 𝐵 𝐻 𝐷 ) ) → ( ( 𝜑 ∧ ( 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ∧ 𝐷 ∈ 𝑋 ) ) → 𝐾 ∈ ( 𝐵 ( Hom ‘ 𝐶 ) 𝐴 ) ) ) |
33 |
32
|
impcom |
⊢ ( ( ( 𝜑 ∧ ( 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ∧ 𝐷 ∈ 𝑋 ) ) ∧ ( 𝐾 ∈ ( 𝐵 𝐼 𝐴 ) ∧ 𝐹 ∈ ( 𝐴 𝐻 𝐷 ) ∧ 𝐺 ∈ ( 𝐵 𝐻 𝐷 ) ) ) → 𝐾 ∈ ( 𝐵 ( Hom ‘ 𝐶 ) 𝐴 ) ) |
34 |
4
|
oveqi |
⊢ ( 𝐴 𝐻 𝐷 ) = ( 𝐴 ( Hom ‘ 𝐶 ) 𝐷 ) |
35 |
34
|
eleq2i |
⊢ ( 𝐹 ∈ ( 𝐴 𝐻 𝐷 ) ↔ 𝐹 ∈ ( 𝐴 ( Hom ‘ 𝐶 ) 𝐷 ) ) |
36 |
35
|
biimpi |
⊢ ( 𝐹 ∈ ( 𝐴 𝐻 𝐷 ) → 𝐹 ∈ ( 𝐴 ( Hom ‘ 𝐶 ) 𝐷 ) ) |
37 |
36
|
3ad2ant2 |
⊢ ( ( 𝐾 ∈ ( 𝐵 𝐼 𝐴 ) ∧ 𝐹 ∈ ( 𝐴 𝐻 𝐷 ) ∧ 𝐺 ∈ ( 𝐵 𝐻 𝐷 ) ) → 𝐹 ∈ ( 𝐴 ( Hom ‘ 𝐶 ) 𝐷 ) ) |
38 |
37
|
adantl |
⊢ ( ( ( 𝜑 ∧ ( 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ∧ 𝐷 ∈ 𝑋 ) ) ∧ ( 𝐾 ∈ ( 𝐵 𝐼 𝐴 ) ∧ 𝐹 ∈ ( 𝐴 𝐻 𝐷 ) ∧ 𝐺 ∈ ( 𝐵 𝐻 𝐷 ) ) ) → 𝐹 ∈ ( 𝐴 ( Hom ‘ 𝐶 ) 𝐷 ) ) |
39 |
3 28 6 12 16 14 17 33 38
|
catcocl |
⊢ ( ( ( 𝜑 ∧ ( 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ∧ 𝐷 ∈ 𝑋 ) ) ∧ ( 𝐾 ∈ ( 𝐵 𝐼 𝐴 ) ∧ 𝐹 ∈ ( 𝐴 𝐻 𝐷 ) ∧ 𝐺 ∈ ( 𝐵 𝐻 𝐷 ) ) ) → ( 𝐹 ( 〈 𝐵 , 𝐴 〉 ⚬ 𝐷 ) 𝐾 ) ∈ ( 𝐵 ( Hom ‘ 𝐶 ) 𝐷 ) ) |
40 |
|
eqid |
⊢ ( ( 𝐵 ( Inv ‘ 𝐶 ) 𝐴 ) ‘ 𝐾 ) = ( ( 𝐵 ( Inv ‘ 𝐶 ) 𝐴 ) ‘ 𝐾 ) |
41 |
6
|
oveqi |
⊢ ( 〈 𝐴 , 𝐵 〉 ⚬ 𝐷 ) = ( 〈 𝐴 , 𝐵 〉 ( comp ‘ 𝐶 ) 𝐷 ) |
42 |
3 10 12 14 16 17 22 27 39 40 41
|
rcaninv |
⊢ ( ( ( 𝜑 ∧ ( 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ∧ 𝐷 ∈ 𝑋 ) ) ∧ ( 𝐾 ∈ ( 𝐵 𝐼 𝐴 ) ∧ 𝐹 ∈ ( 𝐴 𝐻 𝐷 ) ∧ 𝐺 ∈ ( 𝐵 𝐻 𝐷 ) ) ) → ( ( 𝐺 ( 〈 𝐴 , 𝐵 〉 ⚬ 𝐷 ) ( ( 𝐵 ( Inv ‘ 𝐶 ) 𝐴 ) ‘ 𝐾 ) ) = ( ( 𝐹 ( 〈 𝐵 , 𝐴 〉 ⚬ 𝐷 ) 𝐾 ) ( 〈 𝐴 , 𝐵 〉 ⚬ 𝐷 ) ( ( 𝐵 ( Inv ‘ 𝐶 ) 𝐴 ) ‘ 𝐾 ) ) → 𝐺 = ( 𝐹 ( 〈 𝐵 , 𝐴 〉 ⚬ 𝐷 ) 𝐾 ) ) ) |
43 |
7 9 42
|
sylc |
⊢ ( ( ( 𝜑 ∧ ( 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ∧ 𝐷 ∈ 𝑋 ) ) ∧ ( 𝐾 ∈ ( 𝐵 𝐼 𝐴 ) ∧ 𝐹 ∈ ( 𝐴 𝐻 𝐷 ) ∧ 𝐺 ∈ ( 𝐵 𝐻 𝐷 ) ) ∧ ( ( 𝐹 ( 〈 𝐵 , 𝐴 〉 ⚬ 𝐷 ) 𝐾 ) ( 〈 𝐴 , 𝐵 〉 ⚬ 𝐷 ) ( ( 𝐵 ( Inv ‘ 𝐶 ) 𝐴 ) ‘ 𝐾 ) ) = ( 𝐺 ( 〈 𝐴 , 𝐵 〉 ⚬ 𝐷 ) ( ( 𝐵 ( Inv ‘ 𝐶 ) 𝐴 ) ‘ 𝐾 ) ) ) → 𝐺 = ( 𝐹 ( 〈 𝐵 , 𝐴 〉 ⚬ 𝐷 ) 𝐾 ) ) |