Step |
Hyp |
Ref |
Expression |
1 |
|
ipid.1 |
⊢ 𝑋 = ( BaseSet ‘ 𝑈 ) |
2 |
|
ipid.6 |
⊢ 𝑁 = ( normCV ‘ 𝑈 ) |
3 |
|
ipid.7 |
⊢ 𝑃 = ( ·𝑖OLD ‘ 𝑈 ) |
4 |
1 2 3
|
ipidsq |
⊢ ( ( 𝑈 ∈ NrmCVec ∧ 𝐴 ∈ 𝑋 ) → ( 𝐴 𝑃 𝐴 ) = ( ( 𝑁 ‘ 𝐴 ) ↑ 2 ) ) |
5 |
4
|
fveq2d |
⊢ ( ( 𝑈 ∈ NrmCVec ∧ 𝐴 ∈ 𝑋 ) → ( √ ‘ ( 𝐴 𝑃 𝐴 ) ) = ( √ ‘ ( ( 𝑁 ‘ 𝐴 ) ↑ 2 ) ) ) |
6 |
1 2
|
nvcl |
⊢ ( ( 𝑈 ∈ NrmCVec ∧ 𝐴 ∈ 𝑋 ) → ( 𝑁 ‘ 𝐴 ) ∈ ℝ ) |
7 |
1 2
|
nvge0 |
⊢ ( ( 𝑈 ∈ NrmCVec ∧ 𝐴 ∈ 𝑋 ) → 0 ≤ ( 𝑁 ‘ 𝐴 ) ) |
8 |
6 7
|
sqrtsqd |
⊢ ( ( 𝑈 ∈ NrmCVec ∧ 𝐴 ∈ 𝑋 ) → ( √ ‘ ( ( 𝑁 ‘ 𝐴 ) ↑ 2 ) ) = ( 𝑁 ‘ 𝐴 ) ) |
9 |
5 8
|
eqtr2d |
⊢ ( ( 𝑈 ∈ NrmCVec ∧ 𝐴 ∈ 𝑋 ) → ( 𝑁 ‘ 𝐴 ) = ( √ ‘ ( 𝐴 𝑃 𝐴 ) ) ) |