| Step |
Hyp |
Ref |
Expression |
| 1 |
|
simplr |
⊢ ( ( ( ( 𝐴 ∈ ℝ+ ∧ 𝐵 ∈ ℝ+ ) ∧ 𝑎 ∈ ℚ ) ∧ ( 0 < 𝑎 ∧ ( abs ‘ ( 𝑎 − 𝐴 ) ) < 𝐵 ∧ ( abs ‘ ( 𝑎 − 𝐴 ) ) < ( ( denom ‘ 𝑎 ) ↑ - 2 ) ) ) → 𝑎 ∈ ℚ ) |
| 2 |
|
simpr1 |
⊢ ( ( ( ( 𝐴 ∈ ℝ+ ∧ 𝐵 ∈ ℝ+ ) ∧ 𝑎 ∈ ℚ ) ∧ ( 0 < 𝑎 ∧ ( abs ‘ ( 𝑎 − 𝐴 ) ) < 𝐵 ∧ ( abs ‘ ( 𝑎 − 𝐴 ) ) < ( ( denom ‘ 𝑎 ) ↑ - 2 ) ) ) → 0 < 𝑎 ) |
| 3 |
|
simpr3 |
⊢ ( ( ( ( 𝐴 ∈ ℝ+ ∧ 𝐵 ∈ ℝ+ ) ∧ 𝑎 ∈ ℚ ) ∧ ( 0 < 𝑎 ∧ ( abs ‘ ( 𝑎 − 𝐴 ) ) < 𝐵 ∧ ( abs ‘ ( 𝑎 − 𝐴 ) ) < ( ( denom ‘ 𝑎 ) ↑ - 2 ) ) ) → ( abs ‘ ( 𝑎 − 𝐴 ) ) < ( ( denom ‘ 𝑎 ) ↑ - 2 ) ) |
| 4 |
2 3
|
jca |
⊢ ( ( ( ( 𝐴 ∈ ℝ+ ∧ 𝐵 ∈ ℝ+ ) ∧ 𝑎 ∈ ℚ ) ∧ ( 0 < 𝑎 ∧ ( abs ‘ ( 𝑎 − 𝐴 ) ) < 𝐵 ∧ ( abs ‘ ( 𝑎 − 𝐴 ) ) < ( ( denom ‘ 𝑎 ) ↑ - 2 ) ) ) → ( 0 < 𝑎 ∧ ( abs ‘ ( 𝑎 − 𝐴 ) ) < ( ( denom ‘ 𝑎 ) ↑ - 2 ) ) ) |
| 5 |
|
breq2 |
⊢ ( 𝑦 = 𝑎 → ( 0 < 𝑦 ↔ 0 < 𝑎 ) ) |
| 6 |
|
fvoveq1 |
⊢ ( 𝑦 = 𝑎 → ( abs ‘ ( 𝑦 − 𝐴 ) ) = ( abs ‘ ( 𝑎 − 𝐴 ) ) ) |
| 7 |
|
fveq2 |
⊢ ( 𝑦 = 𝑎 → ( denom ‘ 𝑦 ) = ( denom ‘ 𝑎 ) ) |
| 8 |
7
|
oveq1d |
⊢ ( 𝑦 = 𝑎 → ( ( denom ‘ 𝑦 ) ↑ - 2 ) = ( ( denom ‘ 𝑎 ) ↑ - 2 ) ) |
| 9 |
6 8
|
breq12d |
⊢ ( 𝑦 = 𝑎 → ( ( abs ‘ ( 𝑦 − 𝐴 ) ) < ( ( denom ‘ 𝑦 ) ↑ - 2 ) ↔ ( abs ‘ ( 𝑎 − 𝐴 ) ) < ( ( denom ‘ 𝑎 ) ↑ - 2 ) ) ) |
| 10 |
5 9
|
anbi12d |
⊢ ( 𝑦 = 𝑎 → ( ( 0 < 𝑦 ∧ ( abs ‘ ( 𝑦 − 𝐴 ) ) < ( ( denom ‘ 𝑦 ) ↑ - 2 ) ) ↔ ( 0 < 𝑎 ∧ ( abs ‘ ( 𝑎 − 𝐴 ) ) < ( ( denom ‘ 𝑎 ) ↑ - 2 ) ) ) ) |
| 11 |
10
|
elrab |
⊢ ( 𝑎 ∈ { 𝑦 ∈ ℚ ∣ ( 0 < 𝑦 ∧ ( abs ‘ ( 𝑦 − 𝐴 ) ) < ( ( denom ‘ 𝑦 ) ↑ - 2 ) ) } ↔ ( 𝑎 ∈ ℚ ∧ ( 0 < 𝑎 ∧ ( abs ‘ ( 𝑎 − 𝐴 ) ) < ( ( denom ‘ 𝑎 ) ↑ - 2 ) ) ) ) |
| 12 |
1 4 11
|
sylanbrc |
⊢ ( ( ( ( 𝐴 ∈ ℝ+ ∧ 𝐵 ∈ ℝ+ ) ∧ 𝑎 ∈ ℚ ) ∧ ( 0 < 𝑎 ∧ ( abs ‘ ( 𝑎 − 𝐴 ) ) < 𝐵 ∧ ( abs ‘ ( 𝑎 − 𝐴 ) ) < ( ( denom ‘ 𝑎 ) ↑ - 2 ) ) ) → 𝑎 ∈ { 𝑦 ∈ ℚ ∣ ( 0 < 𝑦 ∧ ( abs ‘ ( 𝑦 − 𝐴 ) ) < ( ( denom ‘ 𝑦 ) ↑ - 2 ) ) } ) |
| 13 |
|
simpr2 |
⊢ ( ( ( ( 𝐴 ∈ ℝ+ ∧ 𝐵 ∈ ℝ+ ) ∧ 𝑎 ∈ ℚ ) ∧ ( 0 < 𝑎 ∧ ( abs ‘ ( 𝑎 − 𝐴 ) ) < 𝐵 ∧ ( abs ‘ ( 𝑎 − 𝐴 ) ) < ( ( denom ‘ 𝑎 ) ↑ - 2 ) ) ) → ( abs ‘ ( 𝑎 − 𝐴 ) ) < 𝐵 ) |
| 14 |
|
fvoveq1 |
⊢ ( 𝑥 = 𝑎 → ( abs ‘ ( 𝑥 − 𝐴 ) ) = ( abs ‘ ( 𝑎 − 𝐴 ) ) ) |
| 15 |
14
|
breq1d |
⊢ ( 𝑥 = 𝑎 → ( ( abs ‘ ( 𝑥 − 𝐴 ) ) < 𝐵 ↔ ( abs ‘ ( 𝑎 − 𝐴 ) ) < 𝐵 ) ) |
| 16 |
15
|
rspcev |
⊢ ( ( 𝑎 ∈ { 𝑦 ∈ ℚ ∣ ( 0 < 𝑦 ∧ ( abs ‘ ( 𝑦 − 𝐴 ) ) < ( ( denom ‘ 𝑦 ) ↑ - 2 ) ) } ∧ ( abs ‘ ( 𝑎 − 𝐴 ) ) < 𝐵 ) → ∃ 𝑥 ∈ { 𝑦 ∈ ℚ ∣ ( 0 < 𝑦 ∧ ( abs ‘ ( 𝑦 − 𝐴 ) ) < ( ( denom ‘ 𝑦 ) ↑ - 2 ) ) } ( abs ‘ ( 𝑥 − 𝐴 ) ) < 𝐵 ) |
| 17 |
12 13 16
|
syl2anc |
⊢ ( ( ( ( 𝐴 ∈ ℝ+ ∧ 𝐵 ∈ ℝ+ ) ∧ 𝑎 ∈ ℚ ) ∧ ( 0 < 𝑎 ∧ ( abs ‘ ( 𝑎 − 𝐴 ) ) < 𝐵 ∧ ( abs ‘ ( 𝑎 − 𝐴 ) ) < ( ( denom ‘ 𝑎 ) ↑ - 2 ) ) ) → ∃ 𝑥 ∈ { 𝑦 ∈ ℚ ∣ ( 0 < 𝑦 ∧ ( abs ‘ ( 𝑦 − 𝐴 ) ) < ( ( denom ‘ 𝑦 ) ↑ - 2 ) ) } ( abs ‘ ( 𝑥 − 𝐴 ) ) < 𝐵 ) |
| 18 |
|
irrapxlem5 |
⊢ ( ( 𝐴 ∈ ℝ+ ∧ 𝐵 ∈ ℝ+ ) → ∃ 𝑎 ∈ ℚ ( 0 < 𝑎 ∧ ( abs ‘ ( 𝑎 − 𝐴 ) ) < 𝐵 ∧ ( abs ‘ ( 𝑎 − 𝐴 ) ) < ( ( denom ‘ 𝑎 ) ↑ - 2 ) ) ) |
| 19 |
17 18
|
r19.29a |
⊢ ( ( 𝐴 ∈ ℝ+ ∧ 𝐵 ∈ ℝ+ ) → ∃ 𝑥 ∈ { 𝑦 ∈ ℚ ∣ ( 0 < 𝑦 ∧ ( abs ‘ ( 𝑦 − 𝐴 ) ) < ( ( denom ‘ 𝑦 ) ↑ - 2 ) ) } ( abs ‘ ( 𝑥 − 𝐴 ) ) < 𝐵 ) |