Step |
Hyp |
Ref |
Expression |
1 |
|
qnnen |
⊢ ℚ ≈ ℕ |
2 |
|
nnenom |
⊢ ℕ ≈ ω |
3 |
1 2
|
entri |
⊢ ℚ ≈ ω |
4 |
3 2
|
pm3.2i |
⊢ ( ℚ ≈ ω ∧ ℕ ≈ ω ) |
5 |
|
ssrab2 |
⊢ { 𝑦 ∈ ℚ ∣ ( 0 < 𝑦 ∧ ( abs ‘ ( 𝑦 − 𝐴 ) ) < ( ( denom ‘ 𝑦 ) ↑ - 2 ) ) } ⊆ ℚ |
6 |
|
qssre |
⊢ ℚ ⊆ ℝ |
7 |
5 6
|
sstri |
⊢ { 𝑦 ∈ ℚ ∣ ( 0 < 𝑦 ∧ ( abs ‘ ( 𝑦 − 𝐴 ) ) < ( ( denom ‘ 𝑦 ) ↑ - 2 ) ) } ⊆ ℝ |
8 |
7
|
a1i |
⊢ ( 𝐴 ∈ ( ℝ+ ∖ ℚ ) → { 𝑦 ∈ ℚ ∣ ( 0 < 𝑦 ∧ ( abs ‘ ( 𝑦 − 𝐴 ) ) < ( ( denom ‘ 𝑦 ) ↑ - 2 ) ) } ⊆ ℝ ) |
9 |
|
eldifi |
⊢ ( 𝐴 ∈ ( ℝ+ ∖ ℚ ) → 𝐴 ∈ ℝ+ ) |
10 |
9
|
rpred |
⊢ ( 𝐴 ∈ ( ℝ+ ∖ ℚ ) → 𝐴 ∈ ℝ ) |
11 |
|
eldifn |
⊢ ( 𝐴 ∈ ( ℝ+ ∖ ℚ ) → ¬ 𝐴 ∈ ℚ ) |
12 |
|
elrabi |
⊢ ( 𝐴 ∈ { 𝑦 ∈ ℚ ∣ ( 0 < 𝑦 ∧ ( abs ‘ ( 𝑦 − 𝐴 ) ) < ( ( denom ‘ 𝑦 ) ↑ - 2 ) ) } → 𝐴 ∈ ℚ ) |
13 |
11 12
|
nsyl |
⊢ ( 𝐴 ∈ ( ℝ+ ∖ ℚ ) → ¬ 𝐴 ∈ { 𝑦 ∈ ℚ ∣ ( 0 < 𝑦 ∧ ( abs ‘ ( 𝑦 − 𝐴 ) ) < ( ( denom ‘ 𝑦 ) ↑ - 2 ) ) } ) |
14 |
|
irrapxlem6 |
⊢ ( ( 𝐴 ∈ ℝ+ ∧ 𝑎 ∈ ℝ+ ) → ∃ 𝑏 ∈ { 𝑦 ∈ ℚ ∣ ( 0 < 𝑦 ∧ ( abs ‘ ( 𝑦 − 𝐴 ) ) < ( ( denom ‘ 𝑦 ) ↑ - 2 ) ) } ( abs ‘ ( 𝑏 − 𝐴 ) ) < 𝑎 ) |
15 |
9 14
|
sylan |
⊢ ( ( 𝐴 ∈ ( ℝ+ ∖ ℚ ) ∧ 𝑎 ∈ ℝ+ ) → ∃ 𝑏 ∈ { 𝑦 ∈ ℚ ∣ ( 0 < 𝑦 ∧ ( abs ‘ ( 𝑦 − 𝐴 ) ) < ( ( denom ‘ 𝑦 ) ↑ - 2 ) ) } ( abs ‘ ( 𝑏 − 𝐴 ) ) < 𝑎 ) |
16 |
15
|
ralrimiva |
⊢ ( 𝐴 ∈ ( ℝ+ ∖ ℚ ) → ∀ 𝑎 ∈ ℝ+ ∃ 𝑏 ∈ { 𝑦 ∈ ℚ ∣ ( 0 < 𝑦 ∧ ( abs ‘ ( 𝑦 − 𝐴 ) ) < ( ( denom ‘ 𝑦 ) ↑ - 2 ) ) } ( abs ‘ ( 𝑏 − 𝐴 ) ) < 𝑎 ) |
17 |
|
rencldnfi |
⊢ ( ( ( { 𝑦 ∈ ℚ ∣ ( 0 < 𝑦 ∧ ( abs ‘ ( 𝑦 − 𝐴 ) ) < ( ( denom ‘ 𝑦 ) ↑ - 2 ) ) } ⊆ ℝ ∧ 𝐴 ∈ ℝ ∧ ¬ 𝐴 ∈ { 𝑦 ∈ ℚ ∣ ( 0 < 𝑦 ∧ ( abs ‘ ( 𝑦 − 𝐴 ) ) < ( ( denom ‘ 𝑦 ) ↑ - 2 ) ) } ) ∧ ∀ 𝑎 ∈ ℝ+ ∃ 𝑏 ∈ { 𝑦 ∈ ℚ ∣ ( 0 < 𝑦 ∧ ( abs ‘ ( 𝑦 − 𝐴 ) ) < ( ( denom ‘ 𝑦 ) ↑ - 2 ) ) } ( abs ‘ ( 𝑏 − 𝐴 ) ) < 𝑎 ) → ¬ { 𝑦 ∈ ℚ ∣ ( 0 < 𝑦 ∧ ( abs ‘ ( 𝑦 − 𝐴 ) ) < ( ( denom ‘ 𝑦 ) ↑ - 2 ) ) } ∈ Fin ) |
18 |
8 10 13 16 17
|
syl31anc |
⊢ ( 𝐴 ∈ ( ℝ+ ∖ ℚ ) → ¬ { 𝑦 ∈ ℚ ∣ ( 0 < 𝑦 ∧ ( abs ‘ ( 𝑦 − 𝐴 ) ) < ( ( denom ‘ 𝑦 ) ↑ - 2 ) ) } ∈ Fin ) |
19 |
18 5
|
jctil |
⊢ ( 𝐴 ∈ ( ℝ+ ∖ ℚ ) → ( { 𝑦 ∈ ℚ ∣ ( 0 < 𝑦 ∧ ( abs ‘ ( 𝑦 − 𝐴 ) ) < ( ( denom ‘ 𝑦 ) ↑ - 2 ) ) } ⊆ ℚ ∧ ¬ { 𝑦 ∈ ℚ ∣ ( 0 < 𝑦 ∧ ( abs ‘ ( 𝑦 − 𝐴 ) ) < ( ( denom ‘ 𝑦 ) ↑ - 2 ) ) } ∈ Fin ) ) |
20 |
|
ctbnfien |
⊢ ( ( ( ℚ ≈ ω ∧ ℕ ≈ ω ) ∧ ( { 𝑦 ∈ ℚ ∣ ( 0 < 𝑦 ∧ ( abs ‘ ( 𝑦 − 𝐴 ) ) < ( ( denom ‘ 𝑦 ) ↑ - 2 ) ) } ⊆ ℚ ∧ ¬ { 𝑦 ∈ ℚ ∣ ( 0 < 𝑦 ∧ ( abs ‘ ( 𝑦 − 𝐴 ) ) < ( ( denom ‘ 𝑦 ) ↑ - 2 ) ) } ∈ Fin ) ) → { 𝑦 ∈ ℚ ∣ ( 0 < 𝑦 ∧ ( abs ‘ ( 𝑦 − 𝐴 ) ) < ( ( denom ‘ 𝑦 ) ↑ - 2 ) ) } ≈ ℕ ) |
21 |
4 19 20
|
sylancr |
⊢ ( 𝐴 ∈ ( ℝ+ ∖ ℚ ) → { 𝑦 ∈ ℚ ∣ ( 0 < 𝑦 ∧ ( abs ‘ ( 𝑦 − 𝐴 ) ) < ( ( denom ‘ 𝑦 ) ↑ - 2 ) ) } ≈ ℕ ) |