| Step |
Hyp |
Ref |
Expression |
| 1 |
|
topontop |
⊢ ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) → 𝐽 ∈ Top ) |
| 2 |
|
toponuni |
⊢ ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) → 𝑋 = ∪ 𝐽 ) |
| 3 |
2
|
fveq2d |
⊢ ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) → ( Fil ‘ 𝑋 ) = ( Fil ‘ ∪ 𝐽 ) ) |
| 4 |
3
|
eleq2d |
⊢ ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) → ( 𝐹 ∈ ( Fil ‘ 𝑋 ) ↔ 𝐹 ∈ ( Fil ‘ ∪ 𝐽 ) ) ) |
| 5 |
4
|
biimpa |
⊢ ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝐹 ∈ ( Fil ‘ 𝑋 ) ) → 𝐹 ∈ ( Fil ‘ ∪ 𝐽 ) ) |
| 6 |
|
eqid |
⊢ ∪ 𝐽 = ∪ 𝐽 |
| 7 |
6
|
isfcls |
⊢ ( 𝐴 ∈ ( 𝐽 fClus 𝐹 ) ↔ ( 𝐽 ∈ Top ∧ 𝐹 ∈ ( Fil ‘ ∪ 𝐽 ) ∧ ∀ 𝑠 ∈ 𝐹 𝐴 ∈ ( ( cls ‘ 𝐽 ) ‘ 𝑠 ) ) ) |
| 8 |
|
df-3an |
⊢ ( ( 𝐽 ∈ Top ∧ 𝐹 ∈ ( Fil ‘ ∪ 𝐽 ) ∧ ∀ 𝑠 ∈ 𝐹 𝐴 ∈ ( ( cls ‘ 𝐽 ) ‘ 𝑠 ) ) ↔ ( ( 𝐽 ∈ Top ∧ 𝐹 ∈ ( Fil ‘ ∪ 𝐽 ) ) ∧ ∀ 𝑠 ∈ 𝐹 𝐴 ∈ ( ( cls ‘ 𝐽 ) ‘ 𝑠 ) ) ) |
| 9 |
7 8
|
bitri |
⊢ ( 𝐴 ∈ ( 𝐽 fClus 𝐹 ) ↔ ( ( 𝐽 ∈ Top ∧ 𝐹 ∈ ( Fil ‘ ∪ 𝐽 ) ) ∧ ∀ 𝑠 ∈ 𝐹 𝐴 ∈ ( ( cls ‘ 𝐽 ) ‘ 𝑠 ) ) ) |
| 10 |
9
|
baib |
⊢ ( ( 𝐽 ∈ Top ∧ 𝐹 ∈ ( Fil ‘ ∪ 𝐽 ) ) → ( 𝐴 ∈ ( 𝐽 fClus 𝐹 ) ↔ ∀ 𝑠 ∈ 𝐹 𝐴 ∈ ( ( cls ‘ 𝐽 ) ‘ 𝑠 ) ) ) |
| 11 |
1 5 10
|
syl2an2r |
⊢ ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝐹 ∈ ( Fil ‘ 𝑋 ) ) → ( 𝐴 ∈ ( 𝐽 fClus 𝐹 ) ↔ ∀ 𝑠 ∈ 𝐹 𝐴 ∈ ( ( cls ‘ 𝐽 ) ‘ 𝑠 ) ) ) |