Metamath Proof Explorer


Theorem isfin2

Description: Definition of a II-finite set. (Contributed by Stefan O'Rear, 16-May-2015)

Ref Expression
Assertion isfin2 ( 𝐴𝑉 → ( 𝐴 ∈ FinII ↔ ∀ 𝑦 ∈ 𝒫 𝒫 𝐴 ( ( 𝑦 ≠ ∅ ∧ [] Or 𝑦 ) → 𝑦𝑦 ) ) )

Proof

Step Hyp Ref Expression
1 pweq ( 𝑥 = 𝐴 → 𝒫 𝑥 = 𝒫 𝐴 )
2 1 pweqd ( 𝑥 = 𝐴 → 𝒫 𝒫 𝑥 = 𝒫 𝒫 𝐴 )
3 2 raleqdv ( 𝑥 = 𝐴 → ( ∀ 𝑦 ∈ 𝒫 𝒫 𝑥 ( ( 𝑦 ≠ ∅ ∧ [] Or 𝑦 ) → 𝑦𝑦 ) ↔ ∀ 𝑦 ∈ 𝒫 𝒫 𝐴 ( ( 𝑦 ≠ ∅ ∧ [] Or 𝑦 ) → 𝑦𝑦 ) ) )
4 df-fin2 FinII = { 𝑥 ∣ ∀ 𝑦 ∈ 𝒫 𝒫 𝑥 ( ( 𝑦 ≠ ∅ ∧ [] Or 𝑦 ) → 𝑦𝑦 ) }
5 3 4 elab2g ( 𝐴𝑉 → ( 𝐴 ∈ FinII ↔ ∀ 𝑦 ∈ 𝒫 𝒫 𝐴 ( ( 𝑦 ≠ ∅ ∧ [] Or 𝑦 ) → 𝑦𝑦 ) ) )