Metamath Proof Explorer


Theorem isfin4

Description: Definition of a IV-finite set. (Contributed by Stefan O'Rear, 16-May-2015)

Ref Expression
Assertion isfin4 ( 𝐴𝑉 → ( 𝐴 ∈ FinIV ↔ ¬ ∃ 𝑦 ( 𝑦𝐴𝑦𝐴 ) ) )

Proof

Step Hyp Ref Expression
1 psseq2 ( 𝑥 = 𝐴 → ( 𝑦𝑥𝑦𝐴 ) )
2 breq2 ( 𝑥 = 𝐴 → ( 𝑦𝑥𝑦𝐴 ) )
3 1 2 anbi12d ( 𝑥 = 𝐴 → ( ( 𝑦𝑥𝑦𝑥 ) ↔ ( 𝑦𝐴𝑦𝐴 ) ) )
4 3 exbidv ( 𝑥 = 𝐴 → ( ∃ 𝑦 ( 𝑦𝑥𝑦𝑥 ) ↔ ∃ 𝑦 ( 𝑦𝐴𝑦𝐴 ) ) )
5 4 notbid ( 𝑥 = 𝐴 → ( ¬ ∃ 𝑦 ( 𝑦𝑥𝑦𝑥 ) ↔ ¬ ∃ 𝑦 ( 𝑦𝐴𝑦𝐴 ) ) )
6 df-fin4 FinIV = { 𝑥 ∣ ¬ ∃ 𝑦 ( 𝑦𝑥𝑦𝑥 ) }
7 5 6 elab2g ( 𝐴𝑉 → ( 𝐴 ∈ FinIV ↔ ¬ ∃ 𝑦 ( 𝑦𝐴𝑦𝐴 ) ) )