Description: Definition of a IV-finite set. (Contributed by Stefan O'Rear, 16-May-2015)
Ref | Expression | ||
---|---|---|---|
Assertion | isfin4 | ⊢ ( 𝐴 ∈ 𝑉 → ( 𝐴 ∈ FinIV ↔ ¬ ∃ 𝑦 ( 𝑦 ⊊ 𝐴 ∧ 𝑦 ≈ 𝐴 ) ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | psseq2 | ⊢ ( 𝑥 = 𝐴 → ( 𝑦 ⊊ 𝑥 ↔ 𝑦 ⊊ 𝐴 ) ) | |
2 | breq2 | ⊢ ( 𝑥 = 𝐴 → ( 𝑦 ≈ 𝑥 ↔ 𝑦 ≈ 𝐴 ) ) | |
3 | 1 2 | anbi12d | ⊢ ( 𝑥 = 𝐴 → ( ( 𝑦 ⊊ 𝑥 ∧ 𝑦 ≈ 𝑥 ) ↔ ( 𝑦 ⊊ 𝐴 ∧ 𝑦 ≈ 𝐴 ) ) ) |
4 | 3 | exbidv | ⊢ ( 𝑥 = 𝐴 → ( ∃ 𝑦 ( 𝑦 ⊊ 𝑥 ∧ 𝑦 ≈ 𝑥 ) ↔ ∃ 𝑦 ( 𝑦 ⊊ 𝐴 ∧ 𝑦 ≈ 𝐴 ) ) ) |
5 | 4 | notbid | ⊢ ( 𝑥 = 𝐴 → ( ¬ ∃ 𝑦 ( 𝑦 ⊊ 𝑥 ∧ 𝑦 ≈ 𝑥 ) ↔ ¬ ∃ 𝑦 ( 𝑦 ⊊ 𝐴 ∧ 𝑦 ≈ 𝐴 ) ) ) |
6 | df-fin4 | ⊢ FinIV = { 𝑥 ∣ ¬ ∃ 𝑦 ( 𝑦 ⊊ 𝑥 ∧ 𝑦 ≈ 𝑥 ) } | |
7 | 5 6 | elab2g | ⊢ ( 𝐴 ∈ 𝑉 → ( 𝐴 ∈ FinIV ↔ ¬ ∃ 𝑦 ( 𝑦 ⊊ 𝐴 ∧ 𝑦 ≈ 𝐴 ) ) ) |