| Step | Hyp | Ref | Expression | 
						
							| 1 |  | lpolset.v | ⊢ 𝑉  =  ( Base ‘ 𝑊 ) | 
						
							| 2 |  | lpolset.s | ⊢ 𝑆  =  ( LSubSp ‘ 𝑊 ) | 
						
							| 3 |  | lpolset.z | ⊢  0   =  ( 0g ‘ 𝑊 ) | 
						
							| 4 |  | lpolset.a | ⊢ 𝐴  =  ( LSAtoms ‘ 𝑊 ) | 
						
							| 5 |  | lpolset.h | ⊢ 𝐻  =  ( LSHyp ‘ 𝑊 ) | 
						
							| 6 |  | lpolset.p | ⊢ 𝑃  =  ( LPol ‘ 𝑊 ) | 
						
							| 7 |  | islpold.w | ⊢ ( 𝜑  →  𝑊  ∈  𝑋 ) | 
						
							| 8 |  | islpold.1 | ⊢ ( 𝜑  →   ⊥  : 𝒫  𝑉 ⟶ 𝑆 ) | 
						
							| 9 |  | islpold.2 | ⊢ ( 𝜑  →  (  ⊥  ‘ 𝑉 )  =  {  0  } ) | 
						
							| 10 |  | islpold.3 | ⊢ ( ( 𝜑  ∧  ( 𝑥  ⊆  𝑉  ∧  𝑦  ⊆  𝑉  ∧  𝑥  ⊆  𝑦 ) )  →  (  ⊥  ‘ 𝑦 )  ⊆  (  ⊥  ‘ 𝑥 ) ) | 
						
							| 11 |  | islpold.4 | ⊢ ( ( 𝜑  ∧  𝑥  ∈  𝐴 )  →  (  ⊥  ‘ 𝑥 )  ∈  𝐻 ) | 
						
							| 12 |  | islpold.5 | ⊢ ( ( 𝜑  ∧  𝑥  ∈  𝐴 )  →  (  ⊥  ‘ (  ⊥  ‘ 𝑥 ) )  =  𝑥 ) | 
						
							| 13 | 10 | ex | ⊢ ( 𝜑  →  ( ( 𝑥  ⊆  𝑉  ∧  𝑦  ⊆  𝑉  ∧  𝑥  ⊆  𝑦 )  →  (  ⊥  ‘ 𝑦 )  ⊆  (  ⊥  ‘ 𝑥 ) ) ) | 
						
							| 14 | 13 | alrimivv | ⊢ ( 𝜑  →  ∀ 𝑥 ∀ 𝑦 ( ( 𝑥  ⊆  𝑉  ∧  𝑦  ⊆  𝑉  ∧  𝑥  ⊆  𝑦 )  →  (  ⊥  ‘ 𝑦 )  ⊆  (  ⊥  ‘ 𝑥 ) ) ) | 
						
							| 15 | 11 12 | jca | ⊢ ( ( 𝜑  ∧  𝑥  ∈  𝐴 )  →  ( (  ⊥  ‘ 𝑥 )  ∈  𝐻  ∧  (  ⊥  ‘ (  ⊥  ‘ 𝑥 ) )  =  𝑥 ) ) | 
						
							| 16 | 15 | ralrimiva | ⊢ ( 𝜑  →  ∀ 𝑥  ∈  𝐴 ( (  ⊥  ‘ 𝑥 )  ∈  𝐻  ∧  (  ⊥  ‘ (  ⊥  ‘ 𝑥 ) )  =  𝑥 ) ) | 
						
							| 17 | 9 14 16 | 3jca | ⊢ ( 𝜑  →  ( (  ⊥  ‘ 𝑉 )  =  {  0  }  ∧  ∀ 𝑥 ∀ 𝑦 ( ( 𝑥  ⊆  𝑉  ∧  𝑦  ⊆  𝑉  ∧  𝑥  ⊆  𝑦 )  →  (  ⊥  ‘ 𝑦 )  ⊆  (  ⊥  ‘ 𝑥 ) )  ∧  ∀ 𝑥  ∈  𝐴 ( (  ⊥  ‘ 𝑥 )  ∈  𝐻  ∧  (  ⊥  ‘ (  ⊥  ‘ 𝑥 ) )  =  𝑥 ) ) ) | 
						
							| 18 | 1 2 3 4 5 6 | islpolN | ⊢ ( 𝑊  ∈  𝑋  →  (  ⊥   ∈  𝑃  ↔  (  ⊥  : 𝒫  𝑉 ⟶ 𝑆  ∧  ( (  ⊥  ‘ 𝑉 )  =  {  0  }  ∧  ∀ 𝑥 ∀ 𝑦 ( ( 𝑥  ⊆  𝑉  ∧  𝑦  ⊆  𝑉  ∧  𝑥  ⊆  𝑦 )  →  (  ⊥  ‘ 𝑦 )  ⊆  (  ⊥  ‘ 𝑥 ) )  ∧  ∀ 𝑥  ∈  𝐴 ( (  ⊥  ‘ 𝑥 )  ∈  𝐻  ∧  (  ⊥  ‘ (  ⊥  ‘ 𝑥 ) )  =  𝑥 ) ) ) ) ) | 
						
							| 19 | 7 18 | syl | ⊢ ( 𝜑  →  (  ⊥   ∈  𝑃  ↔  (  ⊥  : 𝒫  𝑉 ⟶ 𝑆  ∧  ( (  ⊥  ‘ 𝑉 )  =  {  0  }  ∧  ∀ 𝑥 ∀ 𝑦 ( ( 𝑥  ⊆  𝑉  ∧  𝑦  ⊆  𝑉  ∧  𝑥  ⊆  𝑦 )  →  (  ⊥  ‘ 𝑦 )  ⊆  (  ⊥  ‘ 𝑥 ) )  ∧  ∀ 𝑥  ∈  𝐴 ( (  ⊥  ‘ 𝑥 )  ∈  𝐻  ∧  (  ⊥  ‘ (  ⊥  ‘ 𝑥 ) )  =  𝑥 ) ) ) ) ) | 
						
							| 20 | 8 17 19 | mpbir2and | ⊢ ( 𝜑  →   ⊥   ∈  𝑃 ) |