Metamath Proof Explorer


Theorem islpoldN

Description: Properties that determine a polarity. (Contributed by NM, 26-Nov-2014) (New usage is discouraged.)

Ref Expression
Hypotheses lpolset.v V=BaseW
lpolset.s S=LSubSpW
lpolset.z 0˙=0W
lpolset.a A=LSAtomsW
lpolset.h H=LSHypW
lpolset.p P=LPolW
islpold.w φWX
islpold.1 φ˙:𝒫VS
islpold.2 φ˙V=0˙
islpold.3 φxVyVxy˙y˙x
islpold.4 φxA˙xH
islpold.5 φxA˙˙x=x
Assertion islpoldN φ˙P

Proof

Step Hyp Ref Expression
1 lpolset.v V=BaseW
2 lpolset.s S=LSubSpW
3 lpolset.z 0˙=0W
4 lpolset.a A=LSAtomsW
5 lpolset.h H=LSHypW
6 lpolset.p P=LPolW
7 islpold.w φWX
8 islpold.1 φ˙:𝒫VS
9 islpold.2 φ˙V=0˙
10 islpold.3 φxVyVxy˙y˙x
11 islpold.4 φxA˙xH
12 islpold.5 φxA˙˙x=x
13 10 ex φxVyVxy˙y˙x
14 13 alrimivv φxyxVyVxy˙y˙x
15 11 12 jca φxA˙xH˙˙x=x
16 15 ralrimiva φxA˙xH˙˙x=x
17 9 14 16 3jca φ˙V=0˙xyxVyVxy˙y˙xxA˙xH˙˙x=x
18 1 2 3 4 5 6 islpolN WX˙P˙:𝒫VS˙V=0˙xyxVyVxy˙y˙xxA˙xH˙˙x=x
19 7 18 syl φ˙P˙:𝒫VS˙V=0˙xyxVyVxy˙y˙xxA˙xH˙˙x=x
20 8 17 19 mpbir2and φ˙P