Metamath Proof Explorer


Theorem lpolfN

Description: Functionality of a polarity. (Contributed by NM, 26-Nov-2014) (New usage is discouraged.)

Ref Expression
Hypotheses lpolf.v V=BaseW
lpolf.s S=LSubSpW
lpolf.p P=LPolW
lpolf.w φWX
lpolf.o φ˙P
Assertion lpolfN φ˙:𝒫VS

Proof

Step Hyp Ref Expression
1 lpolf.v V=BaseW
2 lpolf.s S=LSubSpW
3 lpolf.p P=LPolW
4 lpolf.w φWX
5 lpolf.o φ˙P
6 eqid 0W=0W
7 eqid LSAtomsW=LSAtomsW
8 eqid LSHypW=LSHypW
9 1 2 6 7 8 3 islpolN WX˙P˙:𝒫VS˙V=0WxyxVyVxy˙y˙xxLSAtomsW˙xLSHypW˙˙x=x
10 4 9 syl φ˙P˙:𝒫VS˙V=0WxyxVyVxy˙y˙xxLSAtomsW˙xLSHypW˙˙x=x
11 5 10 mpbid φ˙:𝒫VS˙V=0WxyxVyVxy˙y˙xxLSAtomsW˙xLSHypW˙˙x=x
12 11 simpld φ˙:𝒫VS