| Step | Hyp | Ref | Expression | 
						
							| 1 |  | lpolset.v | ⊢ 𝑉  =  ( Base ‘ 𝑊 ) | 
						
							| 2 |  | lpolset.s | ⊢ 𝑆  =  ( LSubSp ‘ 𝑊 ) | 
						
							| 3 |  | lpolset.z | ⊢  0   =  ( 0g ‘ 𝑊 ) | 
						
							| 4 |  | lpolset.a | ⊢ 𝐴  =  ( LSAtoms ‘ 𝑊 ) | 
						
							| 5 |  | lpolset.h | ⊢ 𝐻  =  ( LSHyp ‘ 𝑊 ) | 
						
							| 6 |  | lpolset.p | ⊢ 𝑃  =  ( LPol ‘ 𝑊 ) | 
						
							| 7 | 1 2 3 4 5 6 | lpolsetN | ⊢ ( 𝑊  ∈  𝑋  →  𝑃  =  { 𝑜  ∈  ( 𝑆  ↑m  𝒫  𝑉 )  ∣  ( ( 𝑜 ‘ 𝑉 )  =  {  0  }  ∧  ∀ 𝑥 ∀ 𝑦 ( ( 𝑥  ⊆  𝑉  ∧  𝑦  ⊆  𝑉  ∧  𝑥  ⊆  𝑦 )  →  ( 𝑜 ‘ 𝑦 )  ⊆  ( 𝑜 ‘ 𝑥 ) )  ∧  ∀ 𝑥  ∈  𝐴 ( ( 𝑜 ‘ 𝑥 )  ∈  𝐻  ∧  ( 𝑜 ‘ ( 𝑜 ‘ 𝑥 ) )  =  𝑥 ) ) } ) | 
						
							| 8 | 7 | eleq2d | ⊢ ( 𝑊  ∈  𝑋  →  (  ⊥   ∈  𝑃  ↔   ⊥   ∈  { 𝑜  ∈  ( 𝑆  ↑m  𝒫  𝑉 )  ∣  ( ( 𝑜 ‘ 𝑉 )  =  {  0  }  ∧  ∀ 𝑥 ∀ 𝑦 ( ( 𝑥  ⊆  𝑉  ∧  𝑦  ⊆  𝑉  ∧  𝑥  ⊆  𝑦 )  →  ( 𝑜 ‘ 𝑦 )  ⊆  ( 𝑜 ‘ 𝑥 ) )  ∧  ∀ 𝑥  ∈  𝐴 ( ( 𝑜 ‘ 𝑥 )  ∈  𝐻  ∧  ( 𝑜 ‘ ( 𝑜 ‘ 𝑥 ) )  =  𝑥 ) ) } ) ) | 
						
							| 9 |  | fveq1 | ⊢ ( 𝑜  =   ⊥   →  ( 𝑜 ‘ 𝑉 )  =  (  ⊥  ‘ 𝑉 ) ) | 
						
							| 10 | 9 | eqeq1d | ⊢ ( 𝑜  =   ⊥   →  ( ( 𝑜 ‘ 𝑉 )  =  {  0  }  ↔  (  ⊥  ‘ 𝑉 )  =  {  0  } ) ) | 
						
							| 11 |  | fveq1 | ⊢ ( 𝑜  =   ⊥   →  ( 𝑜 ‘ 𝑦 )  =  (  ⊥  ‘ 𝑦 ) ) | 
						
							| 12 |  | fveq1 | ⊢ ( 𝑜  =   ⊥   →  ( 𝑜 ‘ 𝑥 )  =  (  ⊥  ‘ 𝑥 ) ) | 
						
							| 13 | 11 12 | sseq12d | ⊢ ( 𝑜  =   ⊥   →  ( ( 𝑜 ‘ 𝑦 )  ⊆  ( 𝑜 ‘ 𝑥 )  ↔  (  ⊥  ‘ 𝑦 )  ⊆  (  ⊥  ‘ 𝑥 ) ) ) | 
						
							| 14 | 13 | imbi2d | ⊢ ( 𝑜  =   ⊥   →  ( ( ( 𝑥  ⊆  𝑉  ∧  𝑦  ⊆  𝑉  ∧  𝑥  ⊆  𝑦 )  →  ( 𝑜 ‘ 𝑦 )  ⊆  ( 𝑜 ‘ 𝑥 ) )  ↔  ( ( 𝑥  ⊆  𝑉  ∧  𝑦  ⊆  𝑉  ∧  𝑥  ⊆  𝑦 )  →  (  ⊥  ‘ 𝑦 )  ⊆  (  ⊥  ‘ 𝑥 ) ) ) ) | 
						
							| 15 | 14 | 2albidv | ⊢ ( 𝑜  =   ⊥   →  ( ∀ 𝑥 ∀ 𝑦 ( ( 𝑥  ⊆  𝑉  ∧  𝑦  ⊆  𝑉  ∧  𝑥  ⊆  𝑦 )  →  ( 𝑜 ‘ 𝑦 )  ⊆  ( 𝑜 ‘ 𝑥 ) )  ↔  ∀ 𝑥 ∀ 𝑦 ( ( 𝑥  ⊆  𝑉  ∧  𝑦  ⊆  𝑉  ∧  𝑥  ⊆  𝑦 )  →  (  ⊥  ‘ 𝑦 )  ⊆  (  ⊥  ‘ 𝑥 ) ) ) ) | 
						
							| 16 | 12 | eleq1d | ⊢ ( 𝑜  =   ⊥   →  ( ( 𝑜 ‘ 𝑥 )  ∈  𝐻  ↔  (  ⊥  ‘ 𝑥 )  ∈  𝐻 ) ) | 
						
							| 17 |  | id | ⊢ ( 𝑜  =   ⊥   →  𝑜  =   ⊥  ) | 
						
							| 18 | 17 12 | fveq12d | ⊢ ( 𝑜  =   ⊥   →  ( 𝑜 ‘ ( 𝑜 ‘ 𝑥 ) )  =  (  ⊥  ‘ (  ⊥  ‘ 𝑥 ) ) ) | 
						
							| 19 | 18 | eqeq1d | ⊢ ( 𝑜  =   ⊥   →  ( ( 𝑜 ‘ ( 𝑜 ‘ 𝑥 ) )  =  𝑥  ↔  (  ⊥  ‘ (  ⊥  ‘ 𝑥 ) )  =  𝑥 ) ) | 
						
							| 20 | 16 19 | anbi12d | ⊢ ( 𝑜  =   ⊥   →  ( ( ( 𝑜 ‘ 𝑥 )  ∈  𝐻  ∧  ( 𝑜 ‘ ( 𝑜 ‘ 𝑥 ) )  =  𝑥 )  ↔  ( (  ⊥  ‘ 𝑥 )  ∈  𝐻  ∧  (  ⊥  ‘ (  ⊥  ‘ 𝑥 ) )  =  𝑥 ) ) ) | 
						
							| 21 | 20 | ralbidv | ⊢ ( 𝑜  =   ⊥   →  ( ∀ 𝑥  ∈  𝐴 ( ( 𝑜 ‘ 𝑥 )  ∈  𝐻  ∧  ( 𝑜 ‘ ( 𝑜 ‘ 𝑥 ) )  =  𝑥 )  ↔  ∀ 𝑥  ∈  𝐴 ( (  ⊥  ‘ 𝑥 )  ∈  𝐻  ∧  (  ⊥  ‘ (  ⊥  ‘ 𝑥 ) )  =  𝑥 ) ) ) | 
						
							| 22 | 10 15 21 | 3anbi123d | ⊢ ( 𝑜  =   ⊥   →  ( ( ( 𝑜 ‘ 𝑉 )  =  {  0  }  ∧  ∀ 𝑥 ∀ 𝑦 ( ( 𝑥  ⊆  𝑉  ∧  𝑦  ⊆  𝑉  ∧  𝑥  ⊆  𝑦 )  →  ( 𝑜 ‘ 𝑦 )  ⊆  ( 𝑜 ‘ 𝑥 ) )  ∧  ∀ 𝑥  ∈  𝐴 ( ( 𝑜 ‘ 𝑥 )  ∈  𝐻  ∧  ( 𝑜 ‘ ( 𝑜 ‘ 𝑥 ) )  =  𝑥 ) )  ↔  ( (  ⊥  ‘ 𝑉 )  =  {  0  }  ∧  ∀ 𝑥 ∀ 𝑦 ( ( 𝑥  ⊆  𝑉  ∧  𝑦  ⊆  𝑉  ∧  𝑥  ⊆  𝑦 )  →  (  ⊥  ‘ 𝑦 )  ⊆  (  ⊥  ‘ 𝑥 ) )  ∧  ∀ 𝑥  ∈  𝐴 ( (  ⊥  ‘ 𝑥 )  ∈  𝐻  ∧  (  ⊥  ‘ (  ⊥  ‘ 𝑥 ) )  =  𝑥 ) ) ) ) | 
						
							| 23 | 22 | elrab | ⊢ (  ⊥   ∈  { 𝑜  ∈  ( 𝑆  ↑m  𝒫  𝑉 )  ∣  ( ( 𝑜 ‘ 𝑉 )  =  {  0  }  ∧  ∀ 𝑥 ∀ 𝑦 ( ( 𝑥  ⊆  𝑉  ∧  𝑦  ⊆  𝑉  ∧  𝑥  ⊆  𝑦 )  →  ( 𝑜 ‘ 𝑦 )  ⊆  ( 𝑜 ‘ 𝑥 ) )  ∧  ∀ 𝑥  ∈  𝐴 ( ( 𝑜 ‘ 𝑥 )  ∈  𝐻  ∧  ( 𝑜 ‘ ( 𝑜 ‘ 𝑥 ) )  =  𝑥 ) ) }  ↔  (  ⊥   ∈  ( 𝑆  ↑m  𝒫  𝑉 )  ∧  ( (  ⊥  ‘ 𝑉 )  =  {  0  }  ∧  ∀ 𝑥 ∀ 𝑦 ( ( 𝑥  ⊆  𝑉  ∧  𝑦  ⊆  𝑉  ∧  𝑥  ⊆  𝑦 )  →  (  ⊥  ‘ 𝑦 )  ⊆  (  ⊥  ‘ 𝑥 ) )  ∧  ∀ 𝑥  ∈  𝐴 ( (  ⊥  ‘ 𝑥 )  ∈  𝐻  ∧  (  ⊥  ‘ (  ⊥  ‘ 𝑥 ) )  =  𝑥 ) ) ) ) | 
						
							| 24 | 2 | fvexi | ⊢ 𝑆  ∈  V | 
						
							| 25 | 1 | fvexi | ⊢ 𝑉  ∈  V | 
						
							| 26 | 25 | pwex | ⊢ 𝒫  𝑉  ∈  V | 
						
							| 27 | 24 26 | elmap | ⊢ (  ⊥   ∈  ( 𝑆  ↑m  𝒫  𝑉 )  ↔   ⊥  : 𝒫  𝑉 ⟶ 𝑆 ) | 
						
							| 28 | 27 | anbi1i | ⊢ ( (  ⊥   ∈  ( 𝑆  ↑m  𝒫  𝑉 )  ∧  ( (  ⊥  ‘ 𝑉 )  =  {  0  }  ∧  ∀ 𝑥 ∀ 𝑦 ( ( 𝑥  ⊆  𝑉  ∧  𝑦  ⊆  𝑉  ∧  𝑥  ⊆  𝑦 )  →  (  ⊥  ‘ 𝑦 )  ⊆  (  ⊥  ‘ 𝑥 ) )  ∧  ∀ 𝑥  ∈  𝐴 ( (  ⊥  ‘ 𝑥 )  ∈  𝐻  ∧  (  ⊥  ‘ (  ⊥  ‘ 𝑥 ) )  =  𝑥 ) ) )  ↔  (  ⊥  : 𝒫  𝑉 ⟶ 𝑆  ∧  ( (  ⊥  ‘ 𝑉 )  =  {  0  }  ∧  ∀ 𝑥 ∀ 𝑦 ( ( 𝑥  ⊆  𝑉  ∧  𝑦  ⊆  𝑉  ∧  𝑥  ⊆  𝑦 )  →  (  ⊥  ‘ 𝑦 )  ⊆  (  ⊥  ‘ 𝑥 ) )  ∧  ∀ 𝑥  ∈  𝐴 ( (  ⊥  ‘ 𝑥 )  ∈  𝐻  ∧  (  ⊥  ‘ (  ⊥  ‘ 𝑥 ) )  =  𝑥 ) ) ) ) | 
						
							| 29 | 23 28 | bitri | ⊢ (  ⊥   ∈  { 𝑜  ∈  ( 𝑆  ↑m  𝒫  𝑉 )  ∣  ( ( 𝑜 ‘ 𝑉 )  =  {  0  }  ∧  ∀ 𝑥 ∀ 𝑦 ( ( 𝑥  ⊆  𝑉  ∧  𝑦  ⊆  𝑉  ∧  𝑥  ⊆  𝑦 )  →  ( 𝑜 ‘ 𝑦 )  ⊆  ( 𝑜 ‘ 𝑥 ) )  ∧  ∀ 𝑥  ∈  𝐴 ( ( 𝑜 ‘ 𝑥 )  ∈  𝐻  ∧  ( 𝑜 ‘ ( 𝑜 ‘ 𝑥 ) )  =  𝑥 ) ) }  ↔  (  ⊥  : 𝒫  𝑉 ⟶ 𝑆  ∧  ( (  ⊥  ‘ 𝑉 )  =  {  0  }  ∧  ∀ 𝑥 ∀ 𝑦 ( ( 𝑥  ⊆  𝑉  ∧  𝑦  ⊆  𝑉  ∧  𝑥  ⊆  𝑦 )  →  (  ⊥  ‘ 𝑦 )  ⊆  (  ⊥  ‘ 𝑥 ) )  ∧  ∀ 𝑥  ∈  𝐴 ( (  ⊥  ‘ 𝑥 )  ∈  𝐻  ∧  (  ⊥  ‘ (  ⊥  ‘ 𝑥 ) )  =  𝑥 ) ) ) ) | 
						
							| 30 | 8 29 | bitrdi | ⊢ ( 𝑊  ∈  𝑋  →  (  ⊥   ∈  𝑃  ↔  (  ⊥  : 𝒫  𝑉 ⟶ 𝑆  ∧  ( (  ⊥  ‘ 𝑉 )  =  {  0  }  ∧  ∀ 𝑥 ∀ 𝑦 ( ( 𝑥  ⊆  𝑉  ∧  𝑦  ⊆  𝑉  ∧  𝑥  ⊆  𝑦 )  →  (  ⊥  ‘ 𝑦 )  ⊆  (  ⊥  ‘ 𝑥 ) )  ∧  ∀ 𝑥  ∈  𝐴 ( (  ⊥  ‘ 𝑥 )  ∈  𝐻  ∧  (  ⊥  ‘ (  ⊥  ‘ 𝑥 ) )  =  𝑥 ) ) ) ) ) |