| Step |
Hyp |
Ref |
Expression |
| 1 |
|
ismhm0.b |
⊢ 𝐵 = ( Base ‘ 𝑆 ) |
| 2 |
|
ismhm0.c |
⊢ 𝐶 = ( Base ‘ 𝑇 ) |
| 3 |
|
ismhm0.p |
⊢ + = ( +g ‘ 𝑆 ) |
| 4 |
|
ismhm0.q |
⊢ ⨣ = ( +g ‘ 𝑇 ) |
| 5 |
|
ismhm0.z |
⊢ 0 = ( 0g ‘ 𝑆 ) |
| 6 |
|
ismhm0.y |
⊢ 𝑌 = ( 0g ‘ 𝑇 ) |
| 7 |
1 2 3 4 5 6
|
ismhm |
⊢ ( 𝐹 ∈ ( 𝑆 MndHom 𝑇 ) ↔ ( ( 𝑆 ∈ Mnd ∧ 𝑇 ∈ Mnd ) ∧ ( 𝐹 : 𝐵 ⟶ 𝐶 ∧ ∀ 𝑥 ∈ 𝐵 ∀ 𝑦 ∈ 𝐵 ( 𝐹 ‘ ( 𝑥 + 𝑦 ) ) = ( ( 𝐹 ‘ 𝑥 ) ⨣ ( 𝐹 ‘ 𝑦 ) ) ∧ ( 𝐹 ‘ 0 ) = 𝑌 ) ) ) |
| 8 |
|
df-3an |
⊢ ( ( 𝐹 : 𝐵 ⟶ 𝐶 ∧ ∀ 𝑥 ∈ 𝐵 ∀ 𝑦 ∈ 𝐵 ( 𝐹 ‘ ( 𝑥 + 𝑦 ) ) = ( ( 𝐹 ‘ 𝑥 ) ⨣ ( 𝐹 ‘ 𝑦 ) ) ∧ ( 𝐹 ‘ 0 ) = 𝑌 ) ↔ ( ( 𝐹 : 𝐵 ⟶ 𝐶 ∧ ∀ 𝑥 ∈ 𝐵 ∀ 𝑦 ∈ 𝐵 ( 𝐹 ‘ ( 𝑥 + 𝑦 ) ) = ( ( 𝐹 ‘ 𝑥 ) ⨣ ( 𝐹 ‘ 𝑦 ) ) ) ∧ ( 𝐹 ‘ 0 ) = 𝑌 ) ) |
| 9 |
|
mndmgm |
⊢ ( 𝑆 ∈ Mnd → 𝑆 ∈ Mgm ) |
| 10 |
|
mndmgm |
⊢ ( 𝑇 ∈ Mnd → 𝑇 ∈ Mgm ) |
| 11 |
9 10
|
anim12i |
⊢ ( ( 𝑆 ∈ Mnd ∧ 𝑇 ∈ Mnd ) → ( 𝑆 ∈ Mgm ∧ 𝑇 ∈ Mgm ) ) |
| 12 |
11
|
biantrurd |
⊢ ( ( 𝑆 ∈ Mnd ∧ 𝑇 ∈ Mnd ) → ( ( 𝐹 : 𝐵 ⟶ 𝐶 ∧ ∀ 𝑥 ∈ 𝐵 ∀ 𝑦 ∈ 𝐵 ( 𝐹 ‘ ( 𝑥 + 𝑦 ) ) = ( ( 𝐹 ‘ 𝑥 ) ⨣ ( 𝐹 ‘ 𝑦 ) ) ) ↔ ( ( 𝑆 ∈ Mgm ∧ 𝑇 ∈ Mgm ) ∧ ( 𝐹 : 𝐵 ⟶ 𝐶 ∧ ∀ 𝑥 ∈ 𝐵 ∀ 𝑦 ∈ 𝐵 ( 𝐹 ‘ ( 𝑥 + 𝑦 ) ) = ( ( 𝐹 ‘ 𝑥 ) ⨣ ( 𝐹 ‘ 𝑦 ) ) ) ) ) ) |
| 13 |
1 2 3 4
|
ismgmhm |
⊢ ( 𝐹 ∈ ( 𝑆 MgmHom 𝑇 ) ↔ ( ( 𝑆 ∈ Mgm ∧ 𝑇 ∈ Mgm ) ∧ ( 𝐹 : 𝐵 ⟶ 𝐶 ∧ ∀ 𝑥 ∈ 𝐵 ∀ 𝑦 ∈ 𝐵 ( 𝐹 ‘ ( 𝑥 + 𝑦 ) ) = ( ( 𝐹 ‘ 𝑥 ) ⨣ ( 𝐹 ‘ 𝑦 ) ) ) ) ) |
| 14 |
12 13
|
bitr4di |
⊢ ( ( 𝑆 ∈ Mnd ∧ 𝑇 ∈ Mnd ) → ( ( 𝐹 : 𝐵 ⟶ 𝐶 ∧ ∀ 𝑥 ∈ 𝐵 ∀ 𝑦 ∈ 𝐵 ( 𝐹 ‘ ( 𝑥 + 𝑦 ) ) = ( ( 𝐹 ‘ 𝑥 ) ⨣ ( 𝐹 ‘ 𝑦 ) ) ) ↔ 𝐹 ∈ ( 𝑆 MgmHom 𝑇 ) ) ) |
| 15 |
14
|
anbi1d |
⊢ ( ( 𝑆 ∈ Mnd ∧ 𝑇 ∈ Mnd ) → ( ( ( 𝐹 : 𝐵 ⟶ 𝐶 ∧ ∀ 𝑥 ∈ 𝐵 ∀ 𝑦 ∈ 𝐵 ( 𝐹 ‘ ( 𝑥 + 𝑦 ) ) = ( ( 𝐹 ‘ 𝑥 ) ⨣ ( 𝐹 ‘ 𝑦 ) ) ) ∧ ( 𝐹 ‘ 0 ) = 𝑌 ) ↔ ( 𝐹 ∈ ( 𝑆 MgmHom 𝑇 ) ∧ ( 𝐹 ‘ 0 ) = 𝑌 ) ) ) |
| 16 |
8 15
|
bitrid |
⊢ ( ( 𝑆 ∈ Mnd ∧ 𝑇 ∈ Mnd ) → ( ( 𝐹 : 𝐵 ⟶ 𝐶 ∧ ∀ 𝑥 ∈ 𝐵 ∀ 𝑦 ∈ 𝐵 ( 𝐹 ‘ ( 𝑥 + 𝑦 ) ) = ( ( 𝐹 ‘ 𝑥 ) ⨣ ( 𝐹 ‘ 𝑦 ) ) ∧ ( 𝐹 ‘ 0 ) = 𝑌 ) ↔ ( 𝐹 ∈ ( 𝑆 MgmHom 𝑇 ) ∧ ( 𝐹 ‘ 0 ) = 𝑌 ) ) ) |
| 17 |
16
|
pm5.32i |
⊢ ( ( ( 𝑆 ∈ Mnd ∧ 𝑇 ∈ Mnd ) ∧ ( 𝐹 : 𝐵 ⟶ 𝐶 ∧ ∀ 𝑥 ∈ 𝐵 ∀ 𝑦 ∈ 𝐵 ( 𝐹 ‘ ( 𝑥 + 𝑦 ) ) = ( ( 𝐹 ‘ 𝑥 ) ⨣ ( 𝐹 ‘ 𝑦 ) ) ∧ ( 𝐹 ‘ 0 ) = 𝑌 ) ) ↔ ( ( 𝑆 ∈ Mnd ∧ 𝑇 ∈ Mnd ) ∧ ( 𝐹 ∈ ( 𝑆 MgmHom 𝑇 ) ∧ ( 𝐹 ‘ 0 ) = 𝑌 ) ) ) |
| 18 |
7 17
|
bitri |
⊢ ( 𝐹 ∈ ( 𝑆 MndHom 𝑇 ) ↔ ( ( 𝑆 ∈ Mnd ∧ 𝑇 ∈ Mnd ) ∧ ( 𝐹 ∈ ( 𝑆 MgmHom 𝑇 ) ∧ ( 𝐹 ‘ 0 ) = 𝑌 ) ) ) |