Metamath Proof Explorer


Theorem isoas

Description: Congruence theorem for isocele triangles: if two angles of a triangle are congruent, then the corresponding sides also are. (Contributed by Thierry Arnoux, 5-Oct-2020)

Ref Expression
Hypotheses isoas.p 𝑃 = ( Base ‘ 𝐺 )
isoas.m = ( dist ‘ 𝐺 )
isoas.i 𝐼 = ( Itv ‘ 𝐺 )
isoas.l 𝐿 = ( LineG ‘ 𝐺 )
isoas.g ( 𝜑𝐺 ∈ TarskiG )
isoas.a ( 𝜑𝐴𝑃 )
isoas.b ( 𝜑𝐵𝑃 )
isoas.c ( 𝜑𝐶𝑃 )
isoas.1 ( 𝜑 → ¬ ( 𝐶 ∈ ( 𝐴 𝐿 𝐵 ) ∨ 𝐴 = 𝐵 ) )
isoas.2 ( 𝜑 → ⟨“ 𝐴 𝐵 𝐶 ”⟩ ( cgrA ‘ 𝐺 ) ⟨“ 𝐴 𝐶 𝐵 ”⟩ )
Assertion isoas ( 𝜑 → ( 𝐴 𝐵 ) = ( 𝐴 𝐶 ) )

Proof

Step Hyp Ref Expression
1 isoas.p 𝑃 = ( Base ‘ 𝐺 )
2 isoas.m = ( dist ‘ 𝐺 )
3 isoas.i 𝐼 = ( Itv ‘ 𝐺 )
4 isoas.l 𝐿 = ( LineG ‘ 𝐺 )
5 isoas.g ( 𝜑𝐺 ∈ TarskiG )
6 isoas.a ( 𝜑𝐴𝑃 )
7 isoas.b ( 𝜑𝐵𝑃 )
8 isoas.c ( 𝜑𝐶𝑃 )
9 isoas.1 ( 𝜑 → ¬ ( 𝐶 ∈ ( 𝐴 𝐿 𝐵 ) ∨ 𝐴 = 𝐵 ) )
10 isoas.2 ( 𝜑 → ⟨“ 𝐴 𝐵 𝐶 ”⟩ ( cgrA ‘ 𝐺 ) ⟨“ 𝐴 𝐶 𝐵 ”⟩ )
11 eqid ( cgrG ‘ 𝐺 ) = ( cgrG ‘ 𝐺 )
12 1 4 3 5 6 7 8 9 ncolrot1 ( 𝜑 → ¬ ( 𝐴 ∈ ( 𝐵 𝐿 𝐶 ) ∨ 𝐵 = 𝐶 ) )
13 1 2 3 5 7 8 axtgcgrrflx ( 𝜑 → ( 𝐵 𝐶 ) = ( 𝐶 𝐵 ) )
14 eqid ( hlG ‘ 𝐺 ) = ( hlG ‘ 𝐺 )
15 1 3 5 14 6 7 8 6 8 7 10 cgracom ( 𝜑 → ⟨“ 𝐴 𝐶 𝐵 ”⟩ ( cgrA ‘ 𝐺 ) ⟨“ 𝐴 𝐵 𝐶 ”⟩ )
16 1 3 2 5 6 8 7 6 7 8 15 cgraswaplr ( 𝜑 → ⟨“ 𝐵 𝐶 𝐴 ”⟩ ( cgrA ‘ 𝐺 ) ⟨“ 𝐶 𝐵 𝐴 ”⟩ )
17 1 2 3 5 7 8 6 8 7 6 4 12 13 16 10 tgasa ( 𝜑 → ⟨“ 𝐵 𝐶 𝐴 ”⟩ ( cgrG ‘ 𝐺 ) ⟨“ 𝐶 𝐵 𝐴 ”⟩ )
18 1 2 3 11 5 7 8 6 8 7 6 17 cgr3simp3 ( 𝜑 → ( 𝐴 𝐵 ) = ( 𝐴 𝐶 ) )